Perfectionnement des algorithmes d'optimisation par essaim particulaire : applications en segmentation d'images et en électronique. (Improvement of particle swarm optimization algorithms : applications in image segmentation and electronics)

La resolution satisfaisante d'un probleme d'optimisation difficile, qui comporte un grand nombre de solutions sous-optimales, justifie souvent le recours a une metaheuristique puissante. La majorite des algorithmes utilises pour resoudre ces problemes d'optimisation sont les metaheuristiques a population. Parmi celles-ci, nous interessons a l'Optimisation par Essaim Particulaire (OEP, ou PSO en anglais) qui est apparue en 1995. PSO s'inspire de la dynamique d'animaux se deplacant en groupes compacts (essaims d'abeilles, vols groupes d'oiseaux, bancs de poissons). Les particules d'un meme essaim communiquent entre elles tout au long de la recherche pour construire une solution au probleme pose, et ce en s'appuyant sur leur experience collective. L'algorithme PSO, qui est simple a comprendre, a programmer et a utiliser, se revele particulierement efficace pour les problemes d'optimisation a variables continues. Cependant, comme toutes les metaheuristiques, PSO possede des inconvenients, qui rebutent encore certains utilisateurs. Le probleme de convergence prematuree, qui peut conduire les algorithmes de ce type a stagner dans un optimum local, est un de ces inconvenients. L'objectif de cette these est de proposer des mecanismes, incorporables a PSO, qui permettent de remedier a cet inconvenient et d'ameliorer les performances et l'efficacite de PSO. Nous proposons dans cette these deux algorithmes, nommes PSO-2S et DEPSO-2S, pour remedier au probleme de la convergence prematuree. Ces algorithmes utilisent des idees innovantes et se caracterisent par de nouvelles strategies d'initialisation dans plusieurs zones, afin d'assurer une bonne couverture de l'espace de recherche par les particules. Toujours dans le cadre de l'amelioration de PSO, nous avons elabore une nouvelle topologie de voisinage, nommee Dcluster, qui organise le reseau de communication entre les particules. Les resultats obtenus sur un jeu de fonctions de test montrent l'efficacite des strategies mises en oeuvre par les differents algorithmes proposes. Enfin, PSO-2S est applique a des problemes pratiques, en segmentation d'images et en electronique

[1]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[2]  Yu-Xuan Wang,et al.  Particle Swarms with dynamic ring topology , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[3]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[4]  Debao Chen,et al.  An improved cooperative particle swarm optimization and its application , 2011, Neural Computing and Applications.

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  E. Seevinck,et al.  CMOS translinear circuits for minimum supply voltage , 2000 .

[7]  Jing Liu,et al.  A multiagent genetic algorithm for global numerical optimization , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[8]  K. Smith,et al.  A second-generation current conveyor and its applications , 1970, IEEE Transactions on Circuit Theory.

[9]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[10]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[11]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[12]  Kurt Antreich,et al.  The sizing rules method for analog integrated circuit design , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[13]  Samir Ben Salem,et al.  A high performances CMOS CCII and high frequency applications , 2006 .

[14]  Robert Azencott,et al.  Simulated annealing : parallelization techniques , 1992 .

[15]  José Neves,et al.  Watch thy neighbor or how the swarm can learn from its environment , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[16]  Ponnuthurai N. Suganthan,et al.  A novel concurrent particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[17]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[18]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[19]  Victor R. Basili,et al.  Iterative enhancement: A practical technique for software development , 1975, IEEE Transactions on Software Engineering.

[20]  Patrick Siarry,et al.  Particle swarm and ant colony algorithms hybridized for improved continuous optimization , 2007, Appl. Math. Comput..

[21]  A. Rodríguez-Vázquez,et al.  Global design of analog cells using statistical optimization techniques , 1994 .

[22]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[23]  Yongling Zheng,et al.  On the convergence analysis and parameter selection in particle swarm optimization , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[24]  Kalyan Veeramachaneni,et al.  Fitness-distance-ratio based particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[25]  Patrick Siarry,et al.  A multi-swarm PSO using charged particles in a partitioned search space for continuous optimization , 2012, Comput. Optim. Appl..

[26]  Amir Nakib,et al.  A New Multiagent Algorithm for Dynamic Continuous Optimization , 2010, Int. J. Appl. Metaheuristic Comput..

[27]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[28]  Péricles B. C. de Miranda,et al.  Dynamic Clan Particle Swarm Optimization , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[29]  Yong Lu,et al.  A robust stochastic genetic algorithm (StGA) for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[30]  A. Nakib Conception de métaheuristiques d'optimisation pour la segmentation d'images : application à des images biomédicales , 2007 .

[31]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[32]  H. Schmid,et al.  Approximating the universal active element , 2000 .

[33]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[34]  Gregory L. Morrill,et al.  Optimization of custom MOS circuits by transistor sizing , 1996, Proceedings of International Conference on Computer Aided Design.

[35]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[36]  Dan Ventura,et al.  Dynamic Sociometry in Particle Swarm Optimization , 2003 .

[37]  Junyan Wang,et al.  Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization , 2011, ICSI.

[38]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[39]  R. Fisher On the Interpretation of χ2 from Contingency Tables, and the Calculation of P , 2010 .

[40]  Shang-Jeng Tsai,et al.  Efficient Population Utilization Strategy for Particle Swarm Optimizer , 2009, IEEE Trans. Syst. Man Cybern. Part B.

[41]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[42]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[43]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Y. Rahmat-Samii,et al.  Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[45]  Gordon W. Roberts,et al.  The current conveyor: history, progress and new results , 1990 .

[46]  Millie Pant,et al.  Two modified differential evolution algorithms and their applications to engineering design problems , 2009 .

[47]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[48]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[49]  Shu-Kai S. Fan,et al.  Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions , 2004 .

[50]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[51]  Vladimiro Miranda,et al.  NEW EVOLUTIONARY PARTICLE SWARM ALGORITHM (EPSO) APPLIED TO VOLTAGE/VAR CONTROL , 2002 .

[52]  Mourad Fakhfakh,et al.  Design of second-generation current conveyors employing bacterial foraging optimization , 2010, Microelectron. J..

[53]  Janez Brest,et al.  Performance comparison of self-adaptive and adaptive differential evolution algorithms , 2007, Soft Comput..

[54]  J. S. F. Barker,et al.  Simulation of Genetic Systems by Automatic Digital Computers , 1958 .

[55]  John R. Koza,et al.  Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems , 1990 .

[56]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[57]  Marco Antonio Montes de Oca,et al.  An Estimation of Distribution Particle Swarm Optimization Algorithm , 2006, ANTS Workshop.

[58]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[59]  Andries Petrus Engelbrecht,et al.  Using neighbourhoods with the guaranteed convergence PSO , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[60]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[61]  Jaroslaw Sobieszczanski-Sobieski,et al.  A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations , 2005 .

[62]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[63]  Rajput S.S. and Jamuar S.S.,et al.  Advanced Applications of Current Conveyors: A Tutorial , 2007 .

[64]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[65]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[66]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[67]  Q. Henry Wu,et al.  MCPSO: A multi-swarm cooperative particle swarm optimizer , 2007, Appl. Math. Comput..

[68]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[69]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[70]  Wesley E. Snyder,et al.  Optimal thresholding - A new approach , 1990, Pattern Recognit. Lett..

[71]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[72]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[73]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[74]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[75]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[76]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization with spatially meaningful neighbours , 2008, 2008 IEEE Swarm Intelligence Symposium.

[77]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[78]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[79]  Mahamod Ismail,et al.  Particle swarm optimization for mobile network design , 2009, IEICE Electron. Express.

[80]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[81]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[82]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[83]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[84]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[85]  Gary G. Yen,et al.  Diversity-Based Information Exchange among Multiple Swarms in Particle Swarm Optimization , 2008, Int. J. Comput. Intell. Appl..

[86]  Konstantinos E. Parsopoulos,et al.  UPSO: A Unified Particle Swarm Optimization Scheme , 2019, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).

[87]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[88]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[89]  Y. Okamoto,et al.  Thermodynamics of Helix-Coil Transitions Studied by Multicanonical Algorithms , 1995, chem-ph/9505006.

[90]  J. Golinski,et al.  An adaptive optimization system applied to machine synthesis , 1973 .

[91]  James Kennedy,et al.  The Behavior of Particles , 1998, Evolutionary Programming.

[92]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[93]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[94]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[95]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[96]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[97]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[98]  Georges Gielen,et al.  Symbolic analysis for automated design of analog integrated circuits , 1991, The Kluwer international series in engineering and computer science.

[99]  Dantong Ouyang,et al.  A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization , 2009, Oper. Res. Lett..

[100]  N. Masmoudi,et al.  An optimized methodology to design CMOS operational amplifier , 2002, The 14th International Conference on Microelectronics,.

[101]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[102]  Erik Valdemar Cuevas Jiménez,et al.  A novel multi-threshold segmentation approach based on differential evolution optimization , 2010, Expert Syst. Appl..

[103]  Ivan Zelinka,et al.  MIXED INTEGER-DISCRETE-CONTINUOUS OPTIMIZATION BY DIFFERENTIAL EVOLUTION Part 1: the optimization method , 2004 .

[104]  John R. Koza,et al.  Hierarchical Genetic Algorithms Operating on Populations of Computer Programs , 1989, IJCAI.

[105]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[106]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[107]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[108]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[109]  Ali Mohades,et al.  Particle swarm optimization with voronoi neighborhood , 2009, 2009 14th International CSI Computer Conference.

[110]  Michael Creutz,et al.  Microcanonical Monte Carlo Simulation , 1983 .

[111]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[112]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[113]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[114]  Maurice Clerc,et al.  Hybridization of Differential Evolution and Particle Swarm Optimization in a New Algorithm: DEPSO-2S , 2012, ICAISC.

[115]  Andrew W. Moore,et al.  Learning Evaluation Functions for Global Optimization and Boolean Satisfiability , 1998, AAAI/IAAI.

[116]  Alain Fabre,et al.  High-frequency high-Q BiCMOS current-mode bandpass filter and mobile communication application , 1998, IEEE J. Solid State Circuits.

[117]  T. Krink,et al.  Particle swarm optimisation with spatial particle extension , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[118]  P. Siarry,et al.  Electronic component model minimization based on log simulated annealing , 1994 .

[119]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[120]  Amit Konar,et al.  Differential Evolution with Local Neighborhood , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[121]  Carlos Sánchez-López,et al.  Symbolic analysis of (MO)(I)CCI(II)(III)‐based analog circuits , 2010, Int. J. Circuit Theory Appl..