Metal–organic framework with optimally selective xenon adsorption and separation

Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal–organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal–organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

[1]  Colin Camerer : Past , Present , Future , 2003 .

[2]  Manfred Lenzen,et al.  Life cycle energy and greenhouse gas emissions of nuclear energy: A review , 2008 .

[3]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[4]  P. Thallapally,et al.  Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[5]  Amy J. Cairns,et al.  Potential of metal-organic frameworks for separation of xenon and krypton. , 2015, Accounts of chemical research.

[6]  Zhijuan Zhang,et al.  The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases , 2014 .

[7]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[8]  R. Krishna,et al.  Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks , 2016 .

[9]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[10]  Zhijuan Zhang,et al.  A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity , 2012 .

[11]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[12]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[13]  David S. Sholl,et al.  Identification of Metal–Organic Framework Materials for Adsorption Separation of Rare Gases: Applicability of Ideal Adsorbed Solution Theory (IAST) and Effects of Inaccessible Framework Regions , 2012 .

[14]  J. Grate,et al.  Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal. , 2012, Chemical communications.

[15]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[16]  P. F. Martin,et al.  A Two-Column Method for the Separation of Kr and Xe from Process Off-Gases , 2014 .

[17]  Diego A. Gómez-Gualdrón,et al.  Ultraporous, Water Stable, and Breathing Zirconium-Based Metal-Organic Frameworks with ftw Topology. , 2015, Journal of the American Chemical Society.

[18]  R. Krishna,et al.  Direct Observation of Xe and Kr Adsorption in a Xe-Selective Microporous Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[19]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[20]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[21]  M. Allendorf,et al.  Effects of Polarizability on the Adsorption of Noble Gases at Low Pressures in Monohalogenated Isoreticular Metal–Organic Frameworks , 2012 .

[22]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[23]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[24]  Yamil J. Colón,et al.  High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites , 2013 .

[25]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[26]  Dorina F. Sava,et al.  Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. , 2015, Chemical Society reviews.

[27]  Wei Li,et al.  A flexible zinc tetrazolate framework exhibiting breathing behaviour on xenon adsorption and selective adsorption of xenon over other noble gases , 2015 .

[28]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[29]  G. Boato,et al.  A self-consistent set of molecular parameters for neon, argon, krypton and xenon , 1961 .

[30]  P. F. Martin,et al.  Fluorocarbon adsorption in hierarchical porous frameworks , 2014, Nature Communications.

[31]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[32]  Frank G. Kerry,et al.  Industrial Gas Handbook: Gas Separation and Purification , 2007 .

[33]  A. Cooper,et al.  Separation of rare gases and chiral molecules by selective binding in porous organic cages. , 2014, Nature materials.

[34]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[35]  T. Garn,et al.  Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities , 2013 .

[36]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes , 2000 .

[37]  M. Allendorf,et al.  Noble Gas Adsorption in Metal–Organic Frameworks Containing Open Metal Sites , 2014 .

[38]  Maciej Haranczyk,et al.  Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals , 2014 .

[39]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[40]  Acknowledgements , 1992, Experimental Gerontology.

[41]  R. Snurr,et al.  Noble gas adsorption in copper trimesate, HKUST-1: An experimental and computational study , 2013 .

[42]  Gary J. Miller,et al.  Chemical and Structural Stability of Zirconium-based Metal–Organic Frameworks with Large Three-Dimensional Pores by Linker Engineering , 2014, Angewandte Chemie.

[43]  Maciej Haranczyk,et al.  What Are the Best Materials To Separate a Xenon/Krypton Mixture? , 2015 .

[44]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[45]  R. T. Yang,et al.  Gas Separation by Adsorption Processes , 1987 .

[46]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[47]  A. Matzger,et al.  Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[48]  P. Thallapally,et al.  Enhanced noble gas adsorption in Ag@MOF-74Ni. , 2014, Chemical communications.

[49]  Maciej Haranczyk,et al.  High accuracy geometric analysis of crystalline porous materials , 2013 .

[50]  Z. Hulvey,et al.  Nanoporous metal formates for krypton/xenon separation. , 2013, Chemical communications.

[51]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[52]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[53]  L. Broadbelt,et al.  Computational screening of metal-organic frameworks for xenon/krypton separation , 2011 .

[54]  P. Thallapally,et al.  Switching Kr/Xe selectivity with temperature in a metal-organic framework. , 2012, Journal of the American Chemical Society.

[55]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[56]  C. Wilmer,et al.  Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks , 2012 .

[57]  Atul K. Jain,et al.  Stability: Energy for a Greenhouse Planet Advanced Technology Paths to Global Climate , 2008 .

[58]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[59]  Mark D. Allendorf,et al.  Luminescent Metal—Organic Frameworks , 2009 .