Three–dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality
暂无分享,去创建一个
[1] B. Konopelchenko,et al. Trapezoidal discrete surfaces: geometry and integrability , 1999 .
[2] S. Manakov,et al. ―∂-Reductions of the Multidimensional Quadrilateral Lattice. The Multidimensional Circular Lattice , 1998 .
[3] J. Nimmo,et al. An Integrable Discretization of a 2+1‐dimensional Sine‐Gordon Equation , 1998 .
[4] P. Santini,et al. The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices , 1997 .
[5] Wolfgang K. Schief,et al. On the geometry of an integrable (2+1)–dimensional sine–Gordon system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[6] J. Nimmo,et al. Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[7] S. Tsarev,et al. An algebraic formula for superposition and the completeness of the Bäcklund transformations of (2+1)-dimensional integrable systems , 1996 .
[8] P. Santini,et al. Multidimensional quadrilateral lattices are integrable , 1996, solv-int/9612007.
[9] A. Doliwa. Geometric discretisation of the Toda system , 1996, solv-int/9612006.
[10] S. P. Tsarev,et al. On superposition of the autoBacklund transformations for (2 + 1)-dimensional integrable systems ∗ , 1996, solv-int/9606003.
[11] L. V. Bogdanov,et al. Lattice and q-difference Darboux-Zakharov-Manakov systems via delta -dressing method , 1995, solv-int/9501007.
[12] W. Schief. On a 2+1-dimensional Darboux system: integrable reductions , 1994 .
[13] B. Dubrovin. Integrable systems in topological field theory , 1992 .
[14] Boris Konopelchenko,et al. On (2+1)-dimensional nonlinear systems of Loewner-type , 1991 .
[15] S. P. Tsarëv. THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .
[16] G. R. W. Quispel,et al. Direct linearization of nonlinear difference-difference equations , 1983 .
[17] Michio Jimbo,et al. Method for Generating Discrete Soliton Equations. I , 1983 .
[18] Decio Levi,et al. Nonlinear differential difference equations as Backlund transformations , 1981 .
[19] Ryogo Hirota,et al. Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .
[20] R. Sauer,et al. Parallelogrammgitter als Modelle pseudosphärischer Flächen , 1950 .
[21] L. Eisenhart. Transformation of Surfaces. , 1915, Proceedings of the National Academy of Sciences of the United States of America.
[22] Wolfgang K. Schief,et al. Affine Spheres: Discretization via Duality Relations , 1999, Exp. Math..
[23] A. Bobenko. Symmetries and Integrability of Difference Equations: Discrete conformal maps and surfaces , 1999 .
[24] U. Pinkall,et al. Discrete surfaces with constant negative Gaussian curvature and the Hirota equation , 1996 .
[25] L. V. Bogdanov,et al. Lattice and q-difference Darboux-Zakharov-Manakov systems via ∂̄-dressing method , 1995 .
[26] U. Pinkall,et al. Discrete isothermic surfaces. , 1994 .
[27] W. Schief,et al. Darboux Theorems and the KP Hierarchy , 1993 .
[28] W. Schief. Generalized Darboux and Darboux-Levi transformations in 2+1 dimensions , 1992 .
[29] G. Darboux. Leçons sur les systémes orthogonaux et les coordonnées curvilignes , 1910 .
[30] G. M.,et al. A Treatise on the Differential Geometry of Curves and Surfaces , 1910, Nature.
[31] G. Lamé. Leçons sur les coordonnées curvilignes et leurs diverses applications , 1859 .