Three–dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality

It is shown that the discrete Darboux system, descriptive of conjugate lattices in Euclidean spaces, admits constraints on the (adjoint) eigenfunctions which may be interpreted as discrete orthogonality conditions on the lattices. Thus, it turns out that the elementary quadrilaterals of orthogonal lattices are cyclic. Orthogonal lattices on lines, planes and spheres are discussed and the underlying integrable systems in one, two and three dimensions are derived explicitly. A discrete analogue of Bianchi's Ribaucour transformation is set down and particular orthogonal lattices are given. As a by–product, discrete Dini surfaces are obtained.

[1]  B. Konopelchenko,et al.  Trapezoidal discrete surfaces: geometry and integrability , 1999 .

[2]  S. Manakov,et al.  ―∂-Reductions of the Multidimensional Quadrilateral Lattice. The Multidimensional Circular Lattice , 1998 .

[3]  J. Nimmo,et al.  An Integrable Discretization of a 2+1‐dimensional Sine‐Gordon Equation , 1998 .

[4]  P. Santini,et al.  The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices , 1997 .

[5]  Wolfgang K. Schief,et al.  On the geometry of an integrable (2+1)–dimensional sine–Gordon system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  J. Nimmo,et al.  Superposition principles associated with the Moutard transformation: an integrable discretization of a (2+1)–dimensional sine–Gordon system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  S. Tsarev,et al.  An algebraic formula for superposition and the completeness of the Bäcklund transformations of (2+1)-dimensional integrable systems , 1996 .

[8]  P. Santini,et al.  Multidimensional quadrilateral lattices are integrable , 1996, solv-int/9612007.

[9]  A. Doliwa Geometric discretisation of the Toda system , 1996, solv-int/9612006.

[10]  S. P. Tsarev,et al.  On superposition of the autoBacklund transformations for (2 + 1)-dimensional integrable systems ∗ , 1996, solv-int/9606003.

[11]  L. V. Bogdanov,et al.  Lattice and q-difference Darboux-Zakharov-Manakov systems via delta -dressing method , 1995, solv-int/9501007.

[12]  W. Schief On a 2+1-dimensional Darboux system: integrable reductions , 1994 .

[13]  B. Dubrovin Integrable systems in topological field theory , 1992 .

[14]  Boris Konopelchenko,et al.  On (2+1)-dimensional nonlinear systems of Loewner-type , 1991 .

[15]  S. P. Tsarëv THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .

[16]  G. R. W. Quispel,et al.  Direct linearization of nonlinear difference-difference equations , 1983 .

[17]  Michio Jimbo,et al.  Method for Generating Discrete Soliton Equations. I , 1983 .

[18]  Decio Levi,et al.  Nonlinear differential difference equations as Backlund transformations , 1981 .

[19]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[20]  R. Sauer,et al.  Parallelogrammgitter als Modelle pseudosphärischer Flächen , 1950 .

[21]  L. Eisenhart Transformation of Surfaces. , 1915, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Wolfgang K. Schief,et al.  Affine Spheres: Discretization via Duality Relations , 1999, Exp. Math..

[23]  A. Bobenko Symmetries and Integrability of Difference Equations: Discrete conformal maps and surfaces , 1999 .

[24]  U. Pinkall,et al.  Discrete surfaces with constant negative Gaussian curvature and the Hirota equation , 1996 .

[25]  L. V. Bogdanov,et al.  Lattice and q-difference Darboux-Zakharov-Manakov systems via ∂̄-dressing method , 1995 .

[26]  U. Pinkall,et al.  Discrete isothermic surfaces. , 1994 .

[27]  W. Schief,et al.  Darboux Theorems and the KP Hierarchy , 1993 .

[28]  W. Schief Generalized Darboux and Darboux-Levi transformations in 2+1 dimensions , 1992 .

[29]  G. Darboux Leçons sur les systémes orthogonaux et les coordonnées curvilignes , 1910 .

[30]  G. M.,et al.  A Treatise on the Differential Geometry of Curves and Surfaces , 1910, Nature.

[31]  G. Lamé Leçons sur les coordonnées curvilignes et leurs diverses applications , 1859 .