Statistical Techniques for Examining Gene

[1]  J. Liu,et al.  Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. , 2001, Nucleic acids research.

[2]  Shane T. Jensen,et al.  The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. , 2003, Journal of molecular biology.

[3]  Hanne Jarmer,et al.  Definition of the Bacillus subtilisPurR Operator Using Genetic and Bioinformatic Tools and Expansion of the PurR Regulon with glyA, guaC,pbuG, xpt-pbuX, yqhZ-folD, and pbuO , 2001, Journal of bacteriology.

[4]  G. Stormo,et al.  Identifying protein-binding sites from unaligned DNA fragments. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. A. Reilly,et al.  An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences , 1990, Proteins.

[6]  M. Eisen,et al.  Supervised Detection of Regulatory Motifs in DNA Sequences , 2003, Statistical applications in genetics and molecular biology.

[7]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[8]  J. Collado-Vides,et al.  Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. , 1998, Journal of molecular biology.

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  Saurabh Sinha,et al.  A Statistical Method for Finding Transcription Factor Binding Sites , 2000, ISMB.

[11]  T. Werner Models for prediction and recognition of eukaryotic promoters , 1999, Mammalian Genome.

[12]  R. Woodgate,et al.  Characterization of DinR, the Bacillus subtilis SOS repressor , 1997, Journal of bacteriology.

[13]  Douglas L. Brutlag,et al.  BioProspector: Discovering Conserved DNA Motifs in Upstream Regulatory Regions of Co-Expressed Genes , 2000, Pacific Symposium on Biocomputing.

[14]  Jun S. Liu,et al.  An algorithm for finding protein–DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments , 2002, Nature Biotechnology.

[15]  M. Hattori,et al.  Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Cornish-Bowden Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. , 1985, Nucleic acids research.

[17]  S. Salzberg,et al.  The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria , 2003, Nature.

[18]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[19]  Pierre Baldi,et al.  Analysis of Yeast's ORF Upstream Regions by Parallel Processing, Microarrays, and Computational Methods , 2000, ISMB.

[20]  G. Chambliss,et al.  Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. , 1997, Nucleic acids research.

[21]  Lee Ann McCue,et al.  Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites , 2003, Nature Biotechnology.

[22]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[23]  H. Bussemaker,et al.  Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Tao Wang,et al.  Functional Analysis of the Bacillus subtilis Zur Regulon , 2002, Journal of bacteriology.

[25]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[26]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[27]  Jun S. Liu,et al.  Markovian structures in biological sequence alignments , 1999 .

[28]  H. Takami,et al.  Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. , 2002, Nucleic acids research.

[29]  S. Ehrlich,et al.  Regulators of aerobic and anaerobic respiration in Bacillus subtilis , 1996, Journal of bacteriology.

[30]  M. Weickert,et al.  Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[32]  J. Collado-Vides,et al.  Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. , 2000, Nucleic acids research.

[33]  G. Church,et al.  Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation , 1998, Nature Biotechnology.

[34]  R. Schoenfeld,et al.  Comparative Genomics of Listeria Species , 1976 .

[35]  M. Oh,et al.  Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. , 2001, Nucleic acids research.

[36]  Uri Keich,et al.  Finding motifs in the twilight zone , 2002, Bioinform..

[37]  Roger Woodgate,et al.  The Bacillus subtilis DinR Binding Site: Redefinition of the Consensus Sequence , 1998, Journal of bacteriology.

[38]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[39]  Jun S. Liu,et al.  Determining and analyzing differentially expressed genes from cDNA microarray experiments with complementary designs , 2004 .

[40]  Jun S. Liu,et al.  Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. , 1993, Science.

[41]  Y. Nakamura,et al.  Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. , 2000, Nucleic acids research.

[42]  I. Jonassen,et al.  Predicting gene regulatory elements in silico on a genomic scale. , 1998, Genome research.

[43]  Jun S. Liu,et al.  Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies , 1995 .

[44]  J. Helmann,et al.  RNA Polymerase and Sigma Factors , 2002 .

[45]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[46]  Panayiotis V Benos,et al.  Probabilistic code for DNA recognition by proteins of the EGR family. , 2002, Journal of molecular biology.

[47]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[48]  H. Bussemaker,et al.  Regulatory element detection using correlation with expression , 2001, Nature Genetics.

[49]  Jun S. Liu,et al.  Discovery of Conserved Sequence Patterns Using a Stochastic Dictionary Model , 2003 .

[50]  Michael B. Eisen,et al.  Identification of regulatory elements using a feature selection method , 2002, Bioinform..

[51]  J. D. Helmann,et al.  Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA , 1995, Nucleic Acids Res..

[52]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[53]  Shane T. Jensen,et al.  The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis , 2004, PLoS biology.

[54]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[55]  Wei Wu,et al.  LOGOS: a modular Bayesian model for de novo motif detection , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[56]  K. Kinzler,et al.  Serial Analysis of Gene Expression , 1995, Science.

[57]  M. Pfahl,et al.  Characteristics of tight binding repressors of the lac operon. , 1981, Journal of molecular biology.

[58]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[59]  Martin C. Frith,et al.  Cluster-Buster: finding dense clusters of motifs in DNA sequences , 2003, Nucleic Acids Res..

[60]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000 .

[61]  Daniel L. Hartl,et al.  GeneMerge - Post-genomic Analysis, Data Mining, and Hypothesis Testing , 2003, Bioinform..

[62]  Ting Wang,et al.  Combining phylogenetic data with co-regulated genes to identify regulatory motifs , 2003, Bioinform..

[63]  Mario Medvedovic,et al.  Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..

[64]  Jun S. Liu Nonparametric hierarchical Bayes via sequential imputations , 1996 .

[65]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[66]  Shane T. Jensen,et al.  Computational Discovery of Gene Regulatory Binding Motifs: A Bayesian Perspective , 2004 .

[67]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Gary D. Stormo,et al.  Identifying DNA and protein patterns with statistically significant alignments of multiple sequences , 1999, Bioinform..

[69]  L. Kroos,et al.  Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. , 1994, Journal of molecular biology.

[70]  G. Stormo,et al.  Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments. , 1992, Journal of molecular biology.

[71]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[72]  David Baltimore,et al.  Regulation of Transcription Initiation , 2000 .

[73]  Patrick Eichenberger,et al.  Genome-Wide Analysis of the Stationary-Phase Sigma Factor (Sigma-H) Regulon of Bacillus subtilis , 2002, Journal of bacteriology.

[74]  William Noble Grundy,et al.  ParaMEME: a parallel implementation and a web interface for a DNA and protein motif discovery tool , 1996, Comput. Appl. Biosci..

[75]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[76]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Kenta Nakai,et al.  BTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics , 2004, Nucleic Acids Res..

[78]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[79]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[80]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[81]  P. Green,et al.  Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .

[82]  A Danchin,et al.  SubtiList: a relational database for the Bacillus subtilis genome. , 1995, Microbiology.

[83]  M. Waterman,et al.  Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. , 1985, Journal of molecular biology.

[84]  George N. Bennett,et al.  Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum , 2001, Journal of bacteriology.

[85]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[86]  G. Stormo,et al.  Additivity in protein-DNA interactions: how good an approximation is it? , 2002, Nucleic acids research.

[87]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.