Siegel’s Lemma and Sum-Distinct Sets

AbstractLet L(x)=a1x1+a2x2+⋅⋅⋅+anxn, n≥2, be a linear form with integer coefficients a1,a2,…,an which are not all zero. A basic problem is to determine nonzero integer vectors x such that L(x)=0, and the maximum norm ‖x‖ is relatively small compared with the size of the coefficients a1,a2,…,an. The main result of this paper asserts that there exist linearly independent vectors x1,…,xn−1∈ℤn such that L(xi)=0, i=1,…,n−1, and $$\|{\mathbf{x}}_{1}\|\cdots\|{\mathbf{x}}_{n-1}\|<\frac{\|{\mathbf{a}}\|}{\sigma_{n}},$$ where a=(a1,a2,…,an) and $$\sigma_{n}=\frac{2}{\pi}\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{n}\,dt.$$ This result also implies a new lower bound on the greatest element of a sum-distinct set of positive integers (Erdös–Moser problem). The main tools are the Minkowski theorem on successive minima and the Busemann theorem from convex geometry.

[1]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[2]  Enrico Bombieri,et al.  Addendum to “On Siegel's lemma” , 1984 .

[3]  P. Laplace Théorie analytique des probabilités , 1995 .

[4]  R. G. Medhurst,et al.  Evaluation of the integral _{}()=2\over∫^{∞}₀(sin\over)ⁿcos(). , 1965 .

[5]  Noam D. Elkies,et al.  An improved lower bound on the greatest element of a sum-distinct set of fixed order , 1986, J. Comb. Theory, Ser. A.

[6]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[7]  A. Schinzel A decomposition of integer vectors. IV , 1991 .

[8]  Andrzej Schinzel,et al.  A Property of Polynomials with an Applicationto Siegel’s Lemma , 2002 .

[9]  Enrico Bombieri,et al.  On Siegel's lemma , 1983 .

[10]  P. McMullen GEOMETRIC TOMOGRAPHY (Encyclopedia of Mathematics and its Applications 58) , 1997 .

[11]  K. Ball Cube slicing in ⁿ , 1986 .

[12]  R. A. Rankin The anomaly of convex bodies , 1953 .

[13]  R. G. Medhurst,et al.  Evaluation of the Integral I n (b) = 2 π ∞ 0 sinx x n cos(bx) dx , 1965 .

[14]  R. Guy Unsolved Problems in Number Theory , 1981 .

[15]  Milton Abramowitz,et al.  Evaluation of the Integral , 1953 .

[16]  Don Chakerian,et al.  Cube Slices, Pictorial Triangles, and Probability , 1991 .

[17]  Jonathan M. Borwein,et al.  Some Remarkable Properties of Sinc and Related Integrals , 2001 .

[18]  Peter B. Borwein,et al.  Newman polynomials with prescribed vanishing and integer sets with distinct subset sums , 2003, Math. Comput..

[19]  Iskander Aliev,et al.  On a decomposition of integer vectors, II. , 2001 .

[20]  G. Pólya,et al.  Berechnung eines bestimmten Integrals , 1913 .