Siegel’s Lemma and Sum-Distinct Sets
暂无分享,去创建一个
[1] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[2] Enrico Bombieri,et al. Addendum to “On Siegel's lemma” , 1984 .
[3] P. Laplace. Théorie analytique des probabilités , 1995 .
[4] R. G. Medhurst,et al. Evaluation of the integral _{}()=2\over∫^{∞}₀(sin\over)ⁿcos(). , 1965 .
[5] Noam D. Elkies,et al. An improved lower bound on the greatest element of a sum-distinct set of fixed order , 1986, J. Comb. Theory, Ser. A.
[6] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[7] A. Schinzel. A decomposition of integer vectors. IV , 1991 .
[8] Andrzej Schinzel,et al. A Property of Polynomials with an Applicationto Siegel’s Lemma , 2002 .
[9] Enrico Bombieri,et al. On Siegel's lemma , 1983 .
[10] P. McMullen. GEOMETRIC TOMOGRAPHY (Encyclopedia of Mathematics and its Applications 58) , 1997 .
[11] K. Ball. Cube slicing in ⁿ , 1986 .
[12] R. A. Rankin. The anomaly of convex bodies , 1953 .
[13] R. G. Medhurst,et al. Evaluation of the Integral I n (b) = 2 π ∞ 0 sinx x n cos(bx) dx , 1965 .
[14] R. Guy. Unsolved Problems in Number Theory , 1981 .
[15] Milton Abramowitz,et al. Evaluation of the Integral , 1953 .
[16] Don Chakerian,et al. Cube Slices, Pictorial Triangles, and Probability , 1991 .
[17] Jonathan M. Borwein,et al. Some Remarkable Properties of Sinc and Related Integrals , 2001 .
[18] Peter B. Borwein,et al. Newman polynomials with prescribed vanishing and integer sets with distinct subset sums , 2003, Math. Comput..
[19] Iskander Aliev,et al. On a decomposition of integer vectors, II. , 2001 .
[20] G. Pólya,et al. Berechnung eines bestimmten Integrals , 1913 .