Construction of all general symmetric informationally complete measurements

We construct the set of all general (i.e. not necessarily rank 1) symmetric informationally complete (SIC) positive operator valued measures (POVMs). In particular, we show that any orthonormal basis of a real vector space of dimension d^2-1 corresponds to some general SIC POVM and vice versa. Our constructed set of all general SIC-POVMs contains weak SIC-POVMs for which each POVM element can be made arbitrarily close to a multiple times the identity. On the other hand, it remains open if for all finite dimensions our constructed family contains a rank 1 SIC-POVM.

[1]  Christopher A. Fuchs,et al.  On the quantumness of a hilbert space , 2004, Quantum information & computation.

[2]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[3]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[4]  Paul Busch,et al.  The determination of the past and the future of a physical system in quantum mechanics , 1989 .

[5]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[6]  E. Groves A Dissertation ON , 1928 .

[7]  C. Ross Found , 1869, The Dental register.

[8]  C. Caves,et al.  Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.

[9]  Masahide Sasaki,et al.  Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..

[10]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[11]  A. F. Foundations of Physics , 1936, Nature.

[12]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[13]  V. B. Belyanin,et al.  Optics and Spectroscopy , 1960, Nature.

[14]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[15]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[16]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[17]  D. M. Appleby Symmetric informationally complete measurements of arbitrary rank , 2007 .

[18]  Joseph M. Renes,et al.  Spherical-code key-distribution protocols for qubits , 2004 .

[19]  Amir Kalev,et al.  Mutually unbiased probability-operator measurements , 2014 .

[20]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.