Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator

Non-classical states of light, such as squeezed states, are used in quantum metrology to improve the sensitivity of mechanical motion sensing, but conversely mechanical oscillations can enhance the measurement of squeezed light.

[1]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[2]  C. Regal,et al.  Observation of Radiation Pressure Shot Noise on a Macroscopic Object , 2012, Science.

[3]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[4]  Keisuke Goda,et al.  A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.

[5]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[6]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[7]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[8]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[9]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[10]  D. Stamper-Kurn,et al.  Optically measuring force near the standard quantum limit , 2013, Science.

[11]  J. Teufel,et al.  Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise. , 2015, Physical review letters.

[12]  B. J. Lawrie,et al.  Ultrasensitive measurement of MEMS cantilever displacement sensitivity below the shot noise limit , 2014, 1405.4767.

[13]  E Knill,et al.  Quantum state tomography of an itinerant squeezed microwave field. , 2010, Physical review letters.

[14]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[15]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[16]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[17]  Vladimir B. Braginsky,et al.  Quantum Nondemolition Measurements , 1980, Science.

[18]  Beating quantum limits in optomechanical sensor by cavity detuning , 2006, quant-ph/0602040.

[19]  Kirk McKenzie,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[20]  P. Zoller,et al.  Cavity-assisted squeezing of a mechanical oscillator , 2009, 0904.1306.

[21]  Karsten Danzmann,et al.  Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. , 2005, Physical review letters.

[22]  Michael S. Allman,et al.  Low-loss superconducting resonant circuits using vacuum-gap-based microwave components , 2010 .

[23]  A. Clerk,et al.  Quantum-limited amplification via reservoir engineering. , 2013, Physical review letters.

[24]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[25]  W. Bowen,et al.  Squeezing‐enhanced measurement sensitivity in a cavity optomechanical system , 2015, 1611.09772.

[26]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[27]  Collett,et al.  Quantum-nondemolition measurement of photon number using radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[28]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[29]  W. Bowen,et al.  Quantum-enhanced micromechanical displacement sensitivity. , 2013, Optics letters.

[30]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.