Feature correspondence and deformable object matching via agglomerative correspondence clustering

We present an efficient method for feature correspondence and object-based image matching, which exploits both photometric similarity and pairwise geometric consistency from local invariant features. We formulate object-based image matching as an unsupervised multi-class clustering problem on a set of candidate feature matches, and propose a novel pairwise dissimilarity measure and a robust linkage model in the framework of hierarchical agglomerative clustering. The algorithm handles significant amount of outliers and deformation as well as multiple clusters, thus enabling simultaneous feature matching and clustering from real-world image pairs with significant clutter and multiple deformable objects. The experimental evaluation on feature correspondence, object recognition, and object-based image matching demonstrates that our method is robust to both outliers and deformation, and applicable to a wide range of image matching problems.

[1]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[5]  Joachim M. Buhmann,et al.  Path-Based Clustering for Grouping of Smooth Curves and Texture Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Ana L. N. Fred,et al.  A New Cluster Isolation Criterion Based on Dissimilarity Increments , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Cordelia Schmid,et al.  Selection of scale-invariant parts for object class recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[10]  Luc Van Gool,et al.  Simultaneous Object Recognition and Segmentation by Image Exploration , 2004, ECCV.

[11]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[13]  Luc Van Gool,et al.  Simultaneous Object Recognition and Segmentation from Single or Multiple Model Views , 2006, International Journal of Computer Vision.

[14]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[15]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[17]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[18]  Minsu Cho,et al.  Co-recognition of Image Pairs by Data-Driven Monte Carlo Image Exploration , 2008, ECCV.

[19]  Esa Rahtu,et al.  Object recognition and segmentation by non-rigid quasi-dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.