Distinguished sets of semi-simple Lie algebras

[1]  Xudong Chen,et al.  Structure theory for ensemble controllability, observability, and duality , 2018, Mathematics of Control, Signals, and Systems.

[2]  Xudong Chen Structure theory for ensemble controllability, observability, and duality , 2019, Mathematics of Control, Signals, and Systems.

[3]  A. Agrachev,et al.  Ensemble controllability by Lie algebraic methods , 2016, 1603.07133.

[4]  Finite order automorphisms on real simple Lie algebras , 2012 .

[5]  Jing Huang,et al.  Double Vogan diagrams and semisimple symmetric spaces , 2009 .

[6]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[7]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[8]  Meng-Kiat Chuah,et al.  Equivalence classes of Vogan diagrams , 2004 .

[9]  Punita Batra Vogan Diagrams of Real Forms of Affine Kac–Moody Lie Algebras , 2002 .

[10]  Punita Batra,et al.  Invariants of Real Forms of Affine Kac-Moody Lie Algebras☆ , 2000 .

[11]  A quick proof of the classification of simple real Lie algebras , 1996 .

[12]  Naomi Ehrich Leonard,et al.  Motion Control of Drift-Free, , 1995 .

[13]  Naomi Ehrich Leonard,et al.  Motion control of drift-free, left-invariant systems on Lie groups , 1995, IEEE Trans. Autom. Control..

[14]  H. Sussmann,et al.  Lie Bracket Extensions and Averaging: The Single-Bracket Case , 1993 .

[15]  Anatoliĭ Timofeevich Fomenko,et al.  Recursion formulas for the Lie integral , 1991 .

[16]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[17]  W. Ledermann INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .

[18]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[19]  R. Carter Lie Groups , 1970, Nature.

[20]  V. Kats,et al.  Automorphisms of finite order of semisimple Lie algebras , 1969 .

[21]  Shôrô Araki,et al.  On root systems and an infinitesimal classification of irreducible symmetric spaces , 1962 .

[22]  I. Satake,et al.  ON REPRESENTATIONS AND COMPACTIFICATIONS OF SYMMETRIC RIEMANNIAN SPACES , 1960 .

[23]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[24]  A. Borel,et al.  Les sous-groupes fermés de rang maximum des groupes de Lie clos , 1949 .