EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or “superrotating,” jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day–night thermal forcing. The strong longitudinal variations in radiative heating—namely intense dayside heating and nightside cooling—trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave–mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet speed on forcing amplitude, strength of friction, and other parameters, as well as the conditions under which jets can form at all.

[1]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[2]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[3]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[4]  K. Heng,et al.  Gliese 581g as a scaled-up version of Earth: atmospheric circulation simulations , 2010, 1010.4719.

[5]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[6]  L. Polvani,et al.  The Matsuno‐Gill model and equatorial superrotation , 2010 .

[7]  Jonathan L. Mitchell,et al.  The transition to superrotation in terrestrial atmospheres , 2010, 1008.1996.

[8]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[9]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[10]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b , 2010, 1007.2942.

[11]  Jun Yu Li,et al.  CIRCULATION AND DISSIPATION ON HOT JUPITERS , 2010, 1005.0589.

[12]  H. Thrastarson,et al.  EFFECTS OF INITIAL FLOW ON CLOSE-IN PLANET ATMOSPHERIC CIRCULATION , 2010, 1004.2871.

[13]  C. Watkins,et al.  GRAVITY WAVES ON HOT EXTRASOLAR PLANETS. I. PROPAGATION AND INTERACTION WITH THE BACKGROUND , 2010, 1003.4818.

[14]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[15]  D. Lin,et al.  RADIATIVE HYDRODYNAMIC SIMULATIONS OF HD209458b: TEMPORAL VARIABILITY , 2010, 1001.0982.

[16]  M. Holman,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[17]  A. Showman,et al.  Generation of equatorial jets by large-scale latent heating on the giant planets , 2009, 0910.3065.

[18]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[19]  K. Menou,et al.  THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS , 2009, 0907.2692.

[20]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[21]  K. Menou,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: A SHALLOW THREE-DIMENSIONAL MODEL , 2008, 0809.1671.

[22]  L. Debnath Geophysical Fluid Dynamics , 2008 .

[23]  A. Showman,et al.  Deep jets on gas-giant planets , 2008 .

[24]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[25]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[26]  M. Marley,et al.  Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing , 2008, 0802.0327.

[27]  T. Schneider,et al.  Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy‐eddy interactions , 2007 .

[28]  Peter L. Read,et al.  Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation Geoffrey K. Vallis. ISBN 0-5218-4969-1. Cambridge University Press 2007. 770 pages. , 2007 .

[29]  Alan D. Aylward,et al.  A Thermospheric Circulation Model for Extrasolar Giant Planets , 2007 .

[30]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[31]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[32]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[33]  G. Vallis Atmospheric and Oceanic Fluid Dynamics , 2006 .

[34]  L. J. Richardson,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[35]  W. Norton Tropical Wave Driving of the Annual Cycle in Tropical Tropopause Temperatures. Part II: Model Results , 2006 .

[36]  A. Showman,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006, astro-ph/0602477.

[37]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[38]  D. Hartmann,et al.  Equatorial Superrotation and the Factors Controlling the Zonal-Mean Zonal Winds in the Tropical Upper Troposphere , 2005 .

[39]  I. Held,et al.  Abrupt Transition to Strong Superrotation in an Axisymmetric Model of the Upper Troposphere , 2004 .

[40]  Chris Hill,et al.  Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube , 2004 .

[41]  J. Holton An introduction to dynamic meteorology , 2004 .

[42]  Gareth P. Williams Barotropic instability and equatorial superrotation , 2003 .

[43]  Manoj Joshi,et al.  Climate model studies of synchronously rotating planets. , 2003, Astrobiology.

[44]  G. P. Williams Jovian Dynamics. Part III: Multiple, Migrating, and Equatorial Jets. , 2003 .

[45]  T. Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002, astro-ph/0202236.

[46]  E. Sarachik,et al.  Thermally Driven Tropical Circulations under Rayleigh Friction and Newtonian Cooling: Analytic Solutions* , 2001 .

[47]  John R. Taylor,et al.  Classical mechanics , 1999, Physics, Structure, and Reality.

[48]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[49]  V. Lagneau,et al.  Eulerian mean, contour integral, and finite-amplitude wave activity diagnostics applied to a single-layer model of the winter stratosphere , 1999 .

[50]  Robert M. Haberle,et al.  Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability☆ , 1997 .

[51]  A. Genio,et al.  Simulations of Superrotation on Slowly Rotating Planets: Sensitivity to Rotation and Initial Condition , 1996 .

[52]  R. Saravanan Equatorial superrotation and maintenance of the general circulation in two-level models , 1993 .

[53]  M. Suárez,et al.  Terrestrial superrotation - A bifurcation of the general circulation , 1992 .

[54]  B. Hoskins,et al.  The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence , 1988 .

[55]  J. Gregory Middle atmosphere dynamics , 1981, Nature.

[56]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .

[57]  木村 竜治,et al.  J. Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag, New York and Heidelberg, 1979, xii+624ページ, 23.5×15.5cm, $39.8. , 1981 .

[58]  A. E. Gill Some simple solutions for heat‐induced tropical circulation , 1980 .

[59]  Arthur Y. Hou,et al.  Nonlinear axially symmetric circulations in a nearly inviscid atmosphere , 1980 .

[60]  R. Thompson Why There is an Intense Eastward Current in the North Atlantic but not in the South Atlantic , 1971 .

[61]  R. Hide Dynamics of the Atmospheres of the Major Planets with an Appendix on the Viscous Boundary Layer at the Rigid Bounding Surface of an Electrically-Conducting Rotating Fluid in the Presence of a Magnetic Field , 1969 .

[62]  C. Rossby Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action , 1939 .

[63]  A. Genio,et al.  Equatorial superrotation in a slowly rotating GCM - Implications for Titan and Venus , 1993 .

[64]  James J. Hack,et al.  Description of a Global Shallow Water Model Based on the Spectral Transform Method , 1992 .

[65]  T. Matsuno,et al.  Quasi-geostrophic motions in the equatorial area , 1966 .

[66]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .