Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework

Abstract. The transformation of a random wave field in shallow water of variable depth is analyzed within the framework of the variable-coefficient Korteweg-de Vries equation. The characteristic wave height varies with depth according to Green's law, and this follows rigorously from the theoretical model. The skewness and kurtosis are computed, and it is shown that they increase when the depth decreases, and simultaneously the wave state deviates from the Gaussian. The probability of large-amplitude (rogue) waves increases within the transition zone. The characteristics of this process depend on the wave steepness, which is characterized in terms of the Ursell parameter. The results obtained show that the number of rogue waves may deviate significantly from the value expected for a flat bottom of a given depth. If the random wave field is represented as a soliton gas, the probabilities of soliton amplitudes increase to a high-amplitude range and the number of large-amplitude (rogue) solitons increases when the water shallows.

[1]  P. Holloway,et al.  A Nonlinear Model of Internal Tide Transformation on the Australian North West Shelf , 1997 .

[2]  Nobuhito Mori,et al.  On Kurtosis and Occurrence Probability of Freak Waves , 2006 .

[3]  Luigi Cavaleri,et al.  Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves , 2006 .

[4]  I. Lavrenov,et al.  Wind-Waves in Oceans , 2003 .

[5]  R. Grimshaw,et al.  Rogue internal waves in the ocean: Long wave model , 2010 .

[6]  Peter A. E. M. Janssen,et al.  Nonlinear Four-Wave Interactions and Freak Waves , 2003 .

[7]  D. Huntley,et al.  A universal form for shoreline run‐up spectra? , 1977 .

[8]  R. Grimshaw,et al.  Modelling Internal Solitary Waves in the Coastal Ocean , 2007 .

[9]  R. Johnson On the development of a solitary wave moving over an uneven bottom , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Andrey Kurkin,et al.  Solitary wave dynamics in shallow water over periodic topography. , 2005, Chaos.

[11]  Lev Shemer,et al.  Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation , 2010 .

[12]  P. Peterson,et al.  Long-time behaviour of soliton ensembles. Part II––Periodical patterns of trajectories , 2003 .

[13]  Harald E. Krogstad,et al.  Oceanic Rogue Waves , 2008 .

[14]  N. Zabusky,et al.  Gradient-Induced Fission of Solitons , 1971 .

[15]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[16]  Ira Didenkulova,et al.  Freak waves in 2005 , 2006 .

[17]  E. Pelinovsky,et al.  Statistical characteristics of long waves nearshore , 2011 .

[18]  Efim Pelinovsky,et al.  Numerical modeling of the KdV random wave field , 2006 .

[19]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[20]  Paul C. Liu A chronology of freaque wave encounters , 2007 .

[21]  R. Erdélyi,et al.  Short‐Lived Large‐Amplitude Pulses in the Nonlinear Long‐Wave Model Described by the Modified Korteweg–De Vries Equation , 2005 .

[22]  P. Peterson,et al.  Long-time behaviour of soliton ensembles. Part I––Emergence of ensembles , 2002 .

[23]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[24]  J. Kalda,et al.  On the KdV soliton formation and discrete spectral analysis , 1996 .

[25]  Efim Pelinovsky,et al.  A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone , 1999 .

[26]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[27]  L. Shemer,et al.  An experimental study of spatial evolution of statistical parameters in a unidirectional narrow‐banded random wavefield , 2009 .