Unknown input observability of decomposed systems consisting of algebraic and integrating parts
暂无分享,去创建一个
[1] G. Basile,et al. On the observability of linear, time-invariant systems with unknown inputs , 1969 .
[2] J. Massey,et al. Invertibility of linear time-invariant dynamical systems , 1969 .
[3] Pavol Brunovský,et al. A classification of linear controllable systems , 1970, Kybernetika.
[4] A. Morse,et al. Status of noninteracting control , 1971 .
[5] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[6] L. Silverman. Discrete Riccati Equations: Alternative Algorithms, Asymptotic Properties, and System Theory Interpretations , 1976 .
[7] N. Karcanias,et al. Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-variable theory , 1976 .
[8] J. Willems,et al. Disturbance Decoupling by Measurement Feedback with Stability or Pole Placement , 1981 .
[9] Giovanni Marro,et al. Some New Results on Unknown Input Observability , 1981 .
[10] J. Bandler,et al. Multiport approach to multiple-fault location in analog circuits , 1983 .
[11] M. Hautus. Strong detectability and observers , 1983 .
[12] Disturbance decoupling and disturbance decoupled estimation in decomposed systems , 1988, 1988., IEEE International Symposium on Circuits and Systems.
[13] A. Willsky,et al. Failure detection and identification , 1989 .
[14] P. Müller,et al. On the observer design for descriptor systems , 1993, IEEE Trans. Autom. Control..
[15] M. Darouach,et al. Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..