Goal-based h-adaptivity of the 1-D diamond difference discrete ordinate method

[1]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[2]  M. Salvatores,et al.  Neutron Flux and Importance Distribution by Collision Method, Starting from a Generalized Source , 1969 .

[3]  William H. Reed,et al.  New Difference Schemes for the Neutron Transport Equation , 1971 .

[4]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[5]  Juhani Pitkäranta,et al.  On the Spatial Differencing of the Discrete Ordinate Neutron Transport Equation , 1978 .

[6]  J. N. Reddy,et al.  Applied Functional Analysis and Variational Methods in Engineering , 1986 .

[7]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[8]  J. P Hennart,et al.  A generalized nodal finite element formalism for discrete ordinates equations in slab geometry Part I: Theory in the continuous moment case , 1995 .

[9]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[10]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[11]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[12]  C. E. Siewert The critical problem with high-order anisotropic scattering , 2001 .

[13]  James S. Warsa,et al.  Analytical SN solutions in heterogeneous slabs using symbolic algebra computer programs , 2002 .

[14]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[15]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[16]  M. Giles,et al.  Progress in adjoint error correction for integral functionals , 2004 .

[17]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[18]  Jean C. Ragusa,et al.  Application of hp Adaptivity to the Multigroup Diffusion Equations , 2009 .

[19]  Ludmil Zikatanov,et al.  A posteriori error estimator and AMR for discrete ordinates nodal transport methods , 2009 .

[20]  Rolf Rannacher,et al.  Goal-oriented error control of the iterative solution of finite element equations , 2009, J. Num. Math..

[21]  HyeongKae Park,et al.  Coupled Space-Angle Adaptivity for Radiation Transport Calculations , 2009 .

[22]  Dmitri Kuzmin,et al.  Goal-oriented a posteriori error estimates for transport problems , 2010, Math. Comput. Simul..

[23]  Wolfgang Bangerth,et al.  Goal-Oriented h-Adaptivity for the Multigroup SPN Equations , 2010 .

[24]  Dmitri Kuzmin,et al.  Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems , 2010, J. Comput. Appl. Math..

[25]  Rolf Rannacher,et al.  Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error , 2010, J. Num. Math..

[26]  Kevin T. Clarno,et al.  Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE , 2010 .

[27]  Yaqi Wang,et al.  Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes , 2011, J. Comput. Phys..

[28]  Danny Lathouwers,et al.  Spatially adaptive eigenvalue estimation for the SN equations on unstructured triangular meshes , 2011 .

[29]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[30]  Danny Lathouwers,et al.  Goal-oriented spatial adaptivity for the SN equations on unstructured triangular meshes , 2011 .

[31]  Christopher C. Pain,et al.  Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes , 2013, J. Comput. Phys..

[32]  Max D. Gunzburger,et al.  Goal-oriented a posteriori error estimation for finite volume methods , 2010, J. Comput. Appl. Math..

[33]  R. P. Smedley-Stevenson,et al.  Goal-based angular adaptivity applied to the spherical harmonics discretisation of the neutral particle transport equation , 2014 .

[34]  Simon Tavener,et al.  A posteriori error estimation for the Lax-Wendroff finite difference scheme , 2014, J. Comput. Appl. Math..

[35]  Angélique Ponçot,et al.  Shared memory parallelism for 3D Cartesian discrete ordinates solver , 2015 .

[36]  Rebecca Siân Jeffers Spatial goal-based error estimation and adaptive mesh refinement (AMR) for diamond difference discrete ordinate (DD-SN) methods , 2016 .