Goal-based h-adaptivity of the 1-D diamond difference discrete ordinate method
暂无分享,去创建一个
François Févotte | Frank Hülsemann | Jean C. Ragusa | József Kópházi | Matthew D. Eaton | R. S. Jeffers | F. Hülsemann | J. Ragusa | M. Eaton | J. Kópházi | M. D. Eaton | F. Févotte
[1] G. I. Bell,et al. Nuclear Reactor Theory , 1952 .
[2] M. Salvatores,et al. Neutron Flux and Importance Distribution by Collision Method, Starting from a Generalized Source , 1969 .
[3] William H. Reed,et al. New Difference Schemes for the Neutron Transport Equation , 1971 .
[4] Roland Glowinski,et al. An introduction to the mathematical theory of finite elements , 1976 .
[5] Juhani Pitkäranta,et al. On the Spatial Differencing of the Discrete Ordinate Neutron Transport Equation , 1978 .
[6] J. N. Reddy,et al. Applied Functional Analysis and Variational Methods in Engineering , 1986 .
[7] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .
[8] J. P Hennart,et al. A generalized nodal finite element formalism for discrete ordinates equations in slab geometry Part I: Theory in the continuous moment case , 1995 .
[9] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[10] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[11] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[12] C. E. Siewert. The critical problem with high-order anisotropic scattering , 2001 .
[13] James S. Warsa,et al. Analytical SN solutions in heterogeneous slabs using symbolic algebra computer programs , 2002 .
[14] D. Venditti,et al. Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .
[15] Harold A. Buetow,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[16] M. Giles,et al. Progress in adjoint error correction for integral functionals , 2004 .
[17] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[18] Jean C. Ragusa,et al. Application of hp Adaptivity to the Multigroup Diffusion Equations , 2009 .
[19] Ludmil Zikatanov,et al. A posteriori error estimator and AMR for discrete ordinates nodal transport methods , 2009 .
[20] Rolf Rannacher,et al. Goal-oriented error control of the iterative solution of finite element equations , 2009, J. Num. Math..
[21] HyeongKae Park,et al. Coupled Space-Angle Adaptivity for Radiation Transport Calculations , 2009 .
[22] Dmitri Kuzmin,et al. Goal-oriented a posteriori error estimates for transport problems , 2010, Math. Comput. Simul..
[23] Wolfgang Bangerth,et al. Goal-Oriented h-Adaptivity for the Multigroup SPN Equations , 2010 .
[24] Dmitri Kuzmin,et al. Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems , 2010, J. Comput. Appl. Math..
[25] Rolf Rannacher,et al. Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error , 2010, J. Num. Math..
[26] Kevin T. Clarno,et al. Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE , 2010 .
[27] Yaqi Wang,et al. Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes , 2011, J. Comput. Phys..
[28] Danny Lathouwers,et al. Spatially adaptive eigenvalue estimation for the SN equations on unstructured triangular meshes , 2011 .
[29] D. Darmofal,et al. Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .
[30] Danny Lathouwers,et al. Goal-oriented spatial adaptivity for the SN equations on unstructured triangular meshes , 2011 .
[31] Christopher C. Pain,et al. Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes , 2013, J. Comput. Phys..
[32] Max D. Gunzburger,et al. Goal-oriented a posteriori error estimation for finite volume methods , 2010, J. Comput. Appl. Math..
[33] R. P. Smedley-Stevenson,et al. Goal-based angular adaptivity applied to the spherical harmonics discretisation of the neutral particle transport equation , 2014 .
[34] Simon Tavener,et al. A posteriori error estimation for the Lax-Wendroff finite difference scheme , 2014, J. Comput. Appl. Math..
[35] Angélique Ponçot,et al. Shared memory parallelism for 3D Cartesian discrete ordinates solver , 2015 .
[36] Rebecca Siân Jeffers. Spatial goal-based error estimation and adaptive mesh refinement (AMR) for diamond difference discrete ordinate (DD-SN) methods , 2016 .