Monocular Depth Decomposition of Semi-Transparent Volume Renderings.

Neural networks have shown great success in extracting geometric information from color images. Especially, monocular depth estimation networks are increasingly reliable in real-world scenes. In this work we investigate the applicability of such monocular depth estimation networks to semi-transparent volume rendered images. As depth is notoriously difficult to define in a volumetric scene without clearly defined surfaces, we consider different depth computations that have emerged in practice, and compare state-of-the-art monocular depth estimation approaches for these different interpretations during an evaluation considering different degrees of opacity in the renderings. Additionally, we investigate how these networks can be extended to further obtain color and opacity information, in order to create a layered representation of the scene based on a single color image. This layered representation consists of spatially separated semi-transparent intervals that composite to the original input rendering. In our experiments we show that existing approaches to monocular depth estimation can be adapted to perform well on semi-transparent volume renderings, which has several applications in the area of scientific visualization, like re-composition with additional objects and labels or additional shading.

[1]  Chaoli Wang,et al.  DL4SciVis: A State-of-the-Art Survey on Deep Learning for Scientific Visualization , 2022, IEEE Transactions on Visualization and Computer Graphics.

[2]  R. Westermann,et al.  Fast Neural Representations for Direct Volume Rendering , 2021, Comput. Graph. Forum.

[3]  R. Westermann,et al.  Differentiable Direct Volume Rendering , 2021, IEEE Transactions on Visualization and Computer Graphics.

[4]  Nassir Navab,et al.  Deep Direct Volume Rendering: Learning Visual Feature Mappings From Exemplary Images , 2021, ArXiv.

[5]  Jaehoon Choi,et al.  SelfDeco: Self-Supervised Monocular Depth Completion in Challenging Indoor Environments , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Timo Ropinski,et al.  Deep Volumetric Ambient Occlusion , 2020, IEEE Transactions on Visualization and Computer Graphics.

[7]  Justus Thies,et al.  Learning Adaptive Sampling and Reconstruction for Volume Visualization , 2020, IEEE Transactions on Visualization and Computer Graphics.

[8]  Zhe L. Lin,et al.  SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Laura Leal-Taix'e,et al.  Focus on Defocus: Bridging the Synthetic to Real Domain Gap for Depth Estimation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Shengjie Zhu,et al.  The Edge of Depth: Explicit Constraints Between Segmentation and Depth , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  V. Lepetit,et al.  Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation Using Displacement Fields , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Shu Kong,et al.  Domain Decluttering: Simplifying Images to Mitigate Synthetic-Real Domain Shift and Improve Depth Estimation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Chunhua Shen,et al.  Enforcing Geometric Constraints of Virtual Normal for Depth Prediction , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[14]  Il Hong Suh,et al.  From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation , 2019, ArXiv.

[15]  Konrad Schindler,et al.  Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Rüdiger Westermann,et al.  Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution , 2019, IEEE Transactions on Visualization and Computer Graphics.

[17]  Chang-Su Kim,et al.  Monocular Depth Estimation Using Relative Depth Maps , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Peter Fearon Sebastian Edwards: American default: The untold story of FDR, the Supreme Court, and the battle over gold , 2019, Journal of Transatlantic Studies.

[19]  Dacheng Tao,et al.  Deep Ordinal Regression Network for Monocular Depth Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Stefan Bruckner,et al.  Smart Surrogate Widgets for Direct Volume Manipulation , 2018, 2018 IEEE Pacific Visualization Symposium (PacificVis).

[21]  Rohit Ghosh,et al.  Development and Validation of Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans , 2018, ArXiv.

[22]  Nassir Navab,et al.  Deeper Depth Prediction with Fully Convolutional Residual Networks , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[23]  Timo Ropinski,et al.  Hybrid Data Visualization Based on Depth Complexity Histogram Analysis , 2015, Comput. Graph. Forum.

[24]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Stefan Lindholm,et al.  Boundary Aware Reconstruction of Scalar Fields , 2014, IEEE Transactions on Visualization and Computer Graphics.

[26]  Rob Fergus,et al.  Depth Map Prediction from a Single Image using a Multi-Scale Deep Network , 2014, NIPS.

[27]  Hans-Christian Hege,et al.  Visibility-Driven Depth Determination of Surface Patches in Direct Volume Rendering , 2014, EuroVis.

[28]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[29]  Thomas Ertl,et al.  Explorable Volumetric Depth Images from Raycasting , 2013, 2013 XXVI Conference on Graphics, Patterns and Images.

[30]  Ferran Argelaguet,et al.  A survey of 3D object selection techniques for virtual environments , 2013, Comput. Graph..

[31]  Frans Vos,et al.  WYSIWYP: What You See Is What You Pick , 2012, IEEE Transactions on Visualization and Computer Graphics.

[32]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[33]  Ulrich Lang,et al.  Image-Based Remote Real-Time Volume Rendering: Decoupling Rendering From View Point Updates , 2012 .

[34]  Hans-Christian Hege,et al.  Perception-Oriented Picking of Structures in Direct Volumetric , 2011 .

[35]  Timo Ropinski,et al.  About the Influence of Illumination Models on Image Comprehension in Direct Volume Rendering , 2011, IEEE Transactions on Visualization and Computer Graphics.

[36]  Jörg-Stefan Praßni,et al.  Shape-based transfer functions for volume visualization , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[37]  Kwan-Liu Ma,et al.  Explorable images for visualizing volume data , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[38]  Stefan Bruckner,et al.  Instant Volume Visualization using Maximum Intensity Difference Accumulation , 2009, Comput. Graph. Forum.

[39]  Penny Rheingans,et al.  Texture-based Transfer Functions for Direct Volume Rendering , 2008, IEEE Transactions on Visualization and Computer Graphics.

[40]  Kwan-Liu Ma,et al.  Size-based Transfer Functions: A New Volume Exploration Technique , 2008, IEEE Transactions on Visualization and Computer Graphics.

[41]  Renato Pajarola,et al.  Proceedings Symposium on Volume and Point-Based Graphics , 2008 .

[42]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[43]  E. Gröller,et al.  VolumeShop: an interactive system for direct volume illustration , 2005, VIS 05. IEEE Visualization, 2005..

[44]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[45]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[46]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[47]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[48]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[49]  Michael J. Bailey,et al.  Using ChromaDepth to Obtain Inexpensive Single-image Stereovision for Scientific Visualization , 1998, J. Graphics, GPU, & Game Tools.

[50]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[51]  Richard Arend Steenblik,et al.  The Chromostereoscopic Process: A Novel Single Image Stereoscopic Process , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[52]  Bernhard Preim,et al.  Combining Pseudo Chroma Depth Enhancement and Parameter Mapping for Vascular Surface Models , 2017, VCBM.

[53]  Jörg-Stefan Praßni,et al.  Internal Labels as Shape Cues for Medical Illustration , 2007, VMV.

[54]  Arie E. Kaufman,et al.  Intermixing Surface and Volume Rendering , 1990 .

[55]  M. Levoy Volume rendering: display of surfaces from volume data , 1988 .