Porous eco-ceramics of low thermal conductivity and high EMI shielding effectiveness from sawdust and sucrose by paste molding

[1]  X. Zhang,et al.  Porous Design of SiCNWs/SiC Nanocomposites with High Strength and Low Thermal Conductivity , 2021 .

[2]  Bin Zou,et al.  Fabrication and characterization of SiC whiskers toughened Al2O3 paste for stereolithography 3D printing applications , 2020, Journal of Alloys and Compounds.

[3]  Jie Kong,et al.  Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers , 2020 .

[4]  P. Wilson,et al.  Nanowire‐decorated SiC foam from tissue paper and silicon powder by filter‐pressing , 2020, International Journal of Applied Ceramic Technology.

[5]  P. Wilson,et al.  Microcellular SiC foams containing in situ grown nanowires for electromagnetic interference shielding , 2019 .

[6]  Zhijiang Wang,et al.  Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties , 2019, Chemical Engineering Journal.

[7]  Jyh-Horng Wu,et al.  Preparation of Biomorphic Porous SiC Ceramics from Bamboo by Combining Sol–Gel Impregnation and Carbothermal Reduction , 2019, Polymers.

[8]  Hezhou Liu,et al.  Synthesis and microwave absorption properties of novel reticulation SiC/Porous melamine-derived carbon foam , 2019, Journal of Alloys and Compounds.

[9]  Jingyang Wang,et al.  Highly porous nano-SiC with very low thermal conductivity and excellent high temperature behavior , 2018 .

[10]  Lipeng Xin,et al.  Thermochemistry and growth mechanism of SiC nanowires , 2017 .

[11]  Lina Wu,et al.  Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures. , 2017, ACS applied materials & interfaces.

[12]  G. Sundararajan,et al.  Effect of Porosity on Structure, Young's Modulus, and Thermal Conductivity of SiC Foams by Direct Foaming and Gelcasting , 2017 .

[13]  Gen-lin Tian,et al.  Effect of different silicon sources on rattan-based silicon carbide ceramic prepared by one-step pyrolysis , 2016, Journal of Wood Science.

[14]  A. Kalam,et al.  Conversion of biomorphic silicon carbide from wood powders carbon template , 2016 .

[15]  Kezhi Li,et al.  Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires , 2016 .

[16]  C. Pham‐Huu,et al.  Silicon carbide foam as a porous support platform for catalytic applications , 2016 .

[17]  Xinghong Zhang,et al.  Ultra-long SiC nanowires synthesized by a simple method , 2015 .

[18]  Guang Li,et al.  Growth of SiC nanowires on wooden template surface using molten salt media , 2014 .

[19]  F. Luo,et al.  Mechanical and electromagnetic shielding properties of SiCf/SiC composites fabricated by combined CVI and PIP process , 2014 .

[20]  Lai-fei Cheng,et al.  Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic , 2014 .

[21]  M. Kazimi,et al.  THERMAL SHOCK FRACTURE OF SILICON CARBIDE AND ITS APPLICATION TO LWR FUEL CLADDING PERFORMANCE DURING REFLOOD , 2013 .

[22]  Jung-Hye Eom,et al.  Processing and properties of macroporous silicon carbide ceramics: A review , 2013 .

[23]  E. Istomina,et al.  Preparation of biomorphic SiC , 2013, Inorganic Materials.

[24]  Jixiao Wang,et al.  PVAm–PIP/PS Composite Membrane with High Performance for CO2/N2 Separation , 2013 .

[25]  A. Ortona,et al.  High Temperature Applications of SiSiC Cellular Ceramics , 2012 .

[26]  P. G. Rao,et al.  Synthesis of biomorphic SiC ceramics from coir fibreboard preform , 2012 .

[27]  P. Colombo,et al.  Silicon carbide-based foams from direct blowing of polycarbosilane , 2012 .

[28]  Chul B. Park,et al.  Processing of Open‐Cell Silicon Carbide Foams by Steam Chest Molding and Carbothermal Reduction , 2011 .

[29]  Zhihao Wang,et al.  Preparation of porous SiC ceramics from waste cotton linter by reactive liquid Si infiltration technique , 2010 .

[30]  I. Sedlářová,et al.  Porous alumina ceramics prepared with wheat flour , 2010 .

[31]  M. Martínez-Escandell,et al.  Manufacture of Biomorphic SiC Components with Homogeneous Properties from Sawdust by Reactive Infiltration with Liquid Silicon , 2010 .

[32]  J. Segurado,et al.  Strength and toughness of cellular SiC at elevated temperature , 2009 .

[33]  M. Fukushima,et al.  Fabrication and microstructural characterization of porous SiC membrane supports with Al2O3―Y2O3 additives , 2009 .

[34]  V. V. B. Prasad,et al.  Synthesis and characterization of Si/SiC ceramics prepared using cotton fabric , 2009 .

[35]  Qiuyu Zhang,et al.  Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites , 2009 .

[36]  Sizhong Li,et al.  Silicon carbide foams produced by siliciding carbon foams derived from mixtures of mesophase pitch and nano-SiC particles , 2008 .

[37]  K. A. Schwetz,et al.  Silicon Carbide Based Hard Materials , 2008 .

[38]  Qiuyu Zhang,et al.  Studies on the preparation and effect of the mechanical properties of titanate coupling reagent modified β-Sic whisker filled celluloid nano-composites , 2008 .

[39]  S. Dong,et al.  Growth mechanism of β-SiC nanowires in SiC reticulated porous ceramics , 2007 .

[40]  R. Zhai,et al.  Growth of SiC nanowires/nanorods using a Fe–Si solution method , 2007 .

[41]  Hongtao Zhang,et al.  Computation of radar absorbing silicon carbide foams and their silica matrix composites , 2007 .

[42]  Hongtao Zhang,et al.  Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band , 2007 .

[43]  Xi‐Wen Du,et al.  Direct synthesis of SiC nanowires by multiple reaction VS growth , 2007 .

[44]  Zeynep Taslicukur,et al.  Production of ceramic foam filters for molten metal filtration using expanded polystyrene , 2007 .

[45]  K. Faber,et al.  Precursor selection and its role in the mechanical properties of porous SiC derived from wood , 2006 .

[46]  H. Thoemen,et al.  Porous SiC Ceramics Derived from Tailored Wood‐Based Fiberboards , 2006 .

[47]  D. Jiang,et al.  Effect of recoating slurry viscosity on the properties of reticulated porous silicon carbide ceramics , 2006 .

[48]  M. Darder,et al.  Caramel–clay nanocomposites , 2005 .

[49]  P. González,et al.  Biomorphic SiC: A New Engineering Ceramic Material , 2005 .

[50]  T. Graule,et al.  Wood‐Derived Porous SiC Ceramics by Sol Infiltration and Carbothermal Reduction , 2004 .

[51]  M. Herrmann,et al.  Densification, Microstructure and Properties of Liquid-Phase Sintered Silicon Carbide , 2004 .

[52]  Jiping Wang,et al.  Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal , 2004 .

[53]  D. Jiang,et al.  Sintering behavior of porous SiC ceramics , 2004 .

[54]  Stephen E. Saddow,et al.  Advances in silicon carbide processing and applications , 2004 .

[55]  P. González,et al.  Extensive Studies on Biomorphic SiC Ceramics Properties for Medical Applications , 2003 .

[56]  Junmin Qian,et al.  Preparation of macroporous SiC from Si and wood powder using infiltration-reaction process , 2003 .

[57]  A. R. Arellano-López,et al.  Low density biomorphic silicon carbide: microstructure and mechanical properties , 2002 .

[58]  M. Singh,et al.  Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors , 2002 .

[59]  F. Müller,et al.  CVI-R Gas Phase Processing of Porous, Biomorphic SiC-Ceramics , 2001 .

[60]  Y. Qian,et al.  Synthesis and Characterization of SiC Nanowires through a Reduction−Carburization Route , 2000 .

[61]  Peter Greil,et al.  Biomorphic Cellular Ceramics , 2000 .

[62]  Peter Greil,et al.  Biomorphic Cellular Silicon Carbide Ceramics from Wood: I. Processing and Microstructure , 1998 .

[63]  M. Ashby,et al.  Cellular Solids: Thermal, electrical and acoustic properties of foams , 1997 .

[64]  B. Matchen Applications of Ceramics in Armor Products , 1996 .

[65]  Philip G. Neudeck,et al.  Progress in silicon carbide semiconductor electronics technology , 1995 .