A Statistical Approach for Distinguishing Hybridization and Incomplete Lineage Sorting

The extent and evolutionary significance of hybridization is difficult to evaluate because of the difficulty in distinguishing hybridization from incomplete lineage sorting. Here we present a novel parametric approach for statistically distinguishing hybridization from incomplete lineage sorting based on minimum genetic distances of a nonrecombining locus. It is based on the idea that the expected minimum genetic distance between sequences from two species is smaller for some hybridization events than for incomplete lineage sorting scenarios. When applied to empirical data sets, distributions can be generated for the minimum interspecies distances expected under incomplete lineage sorting using coalescent simulations. If the observed distance between sequences from two species is smaller than its predicted distribution, incomplete lineage sorting can be rejected and hybridization inferred. We demonstrate the power of the method using simulations and illustrate its application on New Zealand alpine buttercups (Ranunculus). The method is robust and complements existing approaches. Thus it should allow biologists to assess with greater accuracy the importance of hybridization in evolution.

[1]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[2]  Ziheng Yang,et al.  Estimation of hominoid ancestral population sizes under bayesian coalescent models incorporating mutation rate variation and sequencing errors. , 2008, Molecular biology and evolution.

[3]  M. Nee Guide to flowering plant families , 1995, Brittonia.

[4]  L. Rieseberg,et al.  Plant Speciation , 2007, Science.

[5]  Simone Linz,et al.  A Reduction Algorithm for Computing The Hybridization Number of Two Trees , 2007, Evolutionary bioinformatics online.

[6]  T. Tuller,et al.  Inferring phylogenetic networks by the maximum parsimony criterion: a case study. , 2006, Molecular biology and evolution.

[7]  S. Joly,et al.  Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: An example from Rosa in North America. , 2006, Systematic biology.

[8]  C. Simon,et al.  Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). , 2006, Systematic biology.

[9]  N. Rosenberg,et al.  Discordance of Species Trees with Their Most Likely Gene Trees , 2006, PLoS genetics.

[10]  D. Bryant,et al.  A Simple and Robust Statistical Test for Detecting the Presence of Recombination , 2006, Genetics.

[11]  S. Joly,et al.  Polyploid and hybrid evolution in roses east of the Rocky Mountains. , 2006, American journal of botany.

[12]  K. Schierenbeck,et al.  Hybridization as a stimulus for the evolution of invasiveness in plants? , 2006, Euphytica.

[13]  Peter Beerli,et al.  Comparison of Bayesian and maximum-likelihood inference of population genetic parameters , 2006, Bioinform..

[14]  W. Maddison,et al.  Inferring phylogeny despite incomplete lineage sorting. , 2006, Systematic biology.

[15]  Peter J. Lockhart,et al.  Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European Alpine System , 2005 .

[16]  Daniel H. Huson,et al.  Reconstruction of Reticulate Networks from Gene Trees , 2005, RECOMB.

[17]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[18]  Loren H Rieseberg,et al.  Reconstructing patterns of reticulate evolution in plants. , 2004, American journal of botany.

[19]  J. Wen,et al.  Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants. , 2004, Molecular phylogenetics and evolution.

[20]  R. Nielsen,et al.  Multilocus Methods for Estimating Population Sizes, Migration Rates and Divergence Time, With Applications to the Divergence of Drosophila pseudoobscura and D. persimilis , 2004, Genetics.

[21]  J. Wendel,et al.  L. A. S. JOHNSON REVIEW No. 2 Use of nuclear genes for phylogeny reconstruction in plants , 2004 .

[22]  O. Seehausen Hybridization and adaptive radiation. , 2004, Trends in ecology & evolution.

[23]  M. Arnold Transfer and Origin of Adaptations through Natural Hybridization: Were Anderson and Stebbins Right? , 2004, The Plant Cell Online.

[24]  P. Taberlet,et al.  Universal primers for amplification of three non-coding regions of chloroplast DNA , 1991, Plant Molecular Biology.

[25]  J. Wendel,et al.  Ribosomal ITS sequences and plant phylogenetic inference. , 2003, Molecular phylogenetics and evolution.

[26]  D. J. Funk,et al.  Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA , 2003 .

[27]  J. Tate,et al.  Paraphyly of Tarasa (Malvaceae) and Diverse Origins of the Polyploid Species , 2003 .

[28]  L. Rieseberg,et al.  Major Ecological Transitions in Wild Sunflowers Facilitated by Hybridization , 2003, Science.

[29]  Ziheng Yang,et al.  Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.

[30]  Noah A. Rosenberg,et al.  Genealogical trees, coalescent theory and the analysis of genetic polymorphisms , 2002, Nature Reviews Genetics.

[31]  C. A. Machado,et al.  Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. , 2002, Molecular biology and evolution.

[32]  Vladimir Makarenkov,et al.  Reconstruction of biogeographic and evolutionary networks using reticulograms. , 2002, Systematic biology.

[33]  M. Holder,et al.  Difficulties in detecting hybridization. , 2001, Systematic biology.

[34]  T. Sang,et al.  Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Noor,et al.  THE GENETICS OF REPRODUCTIVE ISOLATION AND THE POTENTIAL FOR GENE EXCHANGE BETWEEN DROSOPHILA PSEUDOOBSCURA AND D. PERSIMILIS VIA BACKCROSS HYBRID MALES , 2001, Evolution; international journal of organic evolution.

[36]  N. Barton The role of hybridization in evolution , 2001, Molecular ecology.

[37]  Daniel H. Huson,et al.  Phylogeny, Radiation, and Transoceanic Dispersal of New Zealand Alpine Buttercups: Molecular Evidence under Split Decomposition , 2001 .

[38]  S. Edwards,et al.  GENE DIVERGENCE , POPULATION DIVERGENCE , AND THE VARIANCE IN COALESCENCE TIME IN PHYLOGEOGRAPHIC STUDIES , 2001 .

[39]  T. Sang,et al.  Testing hybridization hypotheses based on incongruent gene trees. , 2000, Systematic biology.

[40]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[41]  J. Braun,et al.  Thermochronological analysis of the dynamics of the Southern Alps, New Zealand , 2000 .

[42]  J. Wendel,et al.  The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. , 1998, American journal of botany.

[43]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[44]  J. Wakeley,et al.  Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. , 1997, Genetics.

[45]  Loren H. Rieseberg,et al.  Hybrid Origins of Plant Species , 1997 .

[46]  T. Sang,et al.  Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). , 1997, American journal of botany.

[47]  Andrew Rambaut,et al.  Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[48]  M. Arnold Natural Hybridization and Evolution , 1997 .

[49]  B. Grant,et al.  High Survival of Darwin's Finch Hybrids: Effects of Beak Morphology and Diets , 1996 .

[50]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[51]  M. Nei,et al.  Relationships between gene trees and species trees. , 1988, Molecular biology and evolution.

[52]  Wen-Hsiung Li,et al.  Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Hudson Properties of a neutral allele model with intragenic recombination. , 1983, Theoretical population biology.

[54]  J. Kingman On the genealogy of large populations , 1982, Journal of Applied Probability.

[55]  C. J-F,et al.  THE COALESCENT , 1980 .

[56]  S. Jeffery Evolution of Protein Molecules , 1979 .

[57]  O. Correspondent Chloroplast DNA , 1967, Nature.

[58]  F. J. F. Fisher,et al.  The Alpine Ranunculi of New Zealand. , 1965 .

[59]  W. Hollander,et al.  Introgressive Hybridization , 1949, The Yale Journal of Biology and Medicine.