Distributions of Galaxy Spectral Types in the Sloan Digital Sky Survey

We perform an objective classification of 170,000 galaxy spectra in the Sloan Digital Sky Survey (SDSS) using the Karhunen-Loeve (KL) transform. With about one-sixth of the total set of galaxy spectra that will be obtained by the survey, we are able to carry out the most extensive analysis of its kind to date. The formalism proposed by Connolly and Szalay is adopted to correct for gappy regions in the spectra and to derive eigenspectra and eigencoefficients. From this analysis, we show that this gap-correction formalism leads to a converging set of eigenspectra and KL-repaired spectra. Furthermore, KL eigenspectra of galaxies are found to be convergent not only as a function of iteration, but also as a function of the number of randomly selected galaxy spectra used in the analysis. From these data a set of 10 eigenspectra of galaxy spectra are constructed, with rest-wavelength coverage 3450–8350 A. The eigencoefficients describing these galaxies naturally place the spectra into several classes defined by the plane formed by the first three eigencoefficients of each spectrum. Spectral types corresponding to different Hubble types and galaxies with extreme emission lines are identified for the 170,000 spectra and are shown to be complementary to existing spectral classifications. From a nonparametric classification technique, we find that the population of galaxies can be divided into three classes that correspond to early late-type through intermediate late-type galaxies. This finding is believed to be related to the color separation of SDSS galaxies discussed in earlier works. Bias in the spectral classifications due to the aperture spectroscopy in the SDSS is small and within the signal-to-noise limit for a majority of galaxies, except for the reddest nearby galaxies and large galaxies (>30 kpc) with prominent emissions. The mean spectra and eigenspectra derived from this work can be downloaded from the SDSS Web site.

[1]  Multivariate analysis of elliptical galaxies , 1984 .

[2]  F. Murtagh,et al.  Multivariate Data Analysis , 1986 .

[3]  Frederic H. Chaffee,et al.  An objective classification scheme for QSO spectra , 1992 .

[4]  R. Kennicutt A spectrophotometric atlas of galaxies , 1992 .

[5]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[6]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[7]  P. Davies Quantum Mechanics, Second edition , 1994 .

[8]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[9]  A. Szalay,et al.  Spectral classification of galaxies: An Orthogonal approach , 1994, astro-ph/9411044.

[10]  O. Lahav,et al.  An artificial neural network approach to the classification of galaxy spectra , 1996, astro-ph/9608073.

[11]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[12]  William H. Press,et al.  Spectral Classification and Luminosity Function of Galaxies in the Las Campanas Redshift Survey , 1997, astro-ph/9711227.

[13]  Global regularities in integrated galaxy spectra , 1996, astro-ph/9612161.

[14]  Harinder P. Singh,et al.  Stellar spectral classification using principal component analysis and artificial neural networks , 1998 .

[15]  Ted von Hippel,et al.  Automated classification of stellar spectra - II. Two-dimensional classification with neural networks and principal components analysis , 1998, astro-ph/9803050.

[16]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[17]  O. Lahav,et al.  Principal component analysis of synthetic galaxy spectra , 1998, astro-ph/9805130.

[18]  K. Taylor,et al.  The 2dF Galaxy Redshift Survey: spectral types and luminosity functions , 1999, astro-ph/9903456.

[19]  A. Szalay,et al.  A Robust Classification of Galaxy Spectra: Dealing with Noisy and Incomplete Data , 1999, astro-ph/9901300.

[20]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[21]  Andrew J. Connolly,et al.  The First Hour of Extragalactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster , 2000, astro-ph/0010470.

[22]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[23]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[24]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History from the Cosmic Spectrum , 2001, astro-ph/0110676.

[25]  M. Fukugita,et al.  Statistical Properties of Bright Galaxies in the Sloan Digital Sky Survey Photometric System , 2001, astro-ph/0105401.

[26]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[27]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[28]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[29]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[30]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[31]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[32]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[33]  R. Nichol,et al.  Average Spectra of Massive Galaxies in the Sloan Digital Sky Survey , 2002, astro-ph/0212087.

[34]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[35]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[36]  Spatial analysis of the Hα emission in the local star-forming UCM galaxies , 2003, astro-ph/0303323.

[37]  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[38]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.