Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration

A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic–photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500–1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously considered inaccessible.

[1]  Richard A. Soref,et al.  Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures , 1993 .

[2]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[3]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[4]  E. Martincic,et al.  Control of direct band gap emission of bulk germanium by mechanical tensile strain , 2010 .

[5]  Jurgen Michel,et al.  Direct-gap optical gain of Ge on Si at room temperature. , 2009, Optics letters.

[6]  Y. Jamil,et al.  Recent advancements in spectroscopy using tunable diode lasers , 2013 .

[7]  Optical Bleaching of Thin Film Ge on Si , 2008 .

[8]  Jakob Birkedal Wagner,et al.  Radiative recombination in heavily doped p -type germanium , 1984 .

[9]  Jesse Lu,et al.  Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate. , 2009, Optics express.

[10]  T.-H. Cheng,et al.  Strain-enhanced photoluminescence from Ge direct transition , 2010 .

[11]  Jurgen Michel,et al.  An electrically pumped Ge-on-Si laser , 2012, OFC/NFOEC.

[12]  Jurgen Michel,et al.  Direct gap photoluminescence of n-type tensile-strained Ge-on-Si , 2009 .

[13]  David J. Roulston,et al.  A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers , 1991 .

[14]  M. Romagnoli,et al.  Germanium as the unifying material for silicon photonics , 2012 .

[15]  G. Masini,et al.  Ge/Si (001) Photodetector for Near Infrared Light , 1997 .

[16]  Kazumi Wada,et al.  High-quality Ge epilayers on Si with low threading-dislocation densities , 1999 .

[17]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[18]  I. Sagnes,et al.  Optical gain in single tensile-strained germanium photonic wire. , 2011, Optics express.

[19]  J. Michel,et al.  High phosphorous doped germanium: Dopant diffusion and modeling , 2012 .

[20]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[21]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[22]  David A. B. Miller,et al.  A micromachining-based technology for enhancing germanium light emission via tensile strain , 2012, Nature Photonics.

[23]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.

[24]  M. Scully,et al.  Photoluminescence spectra of germanium at high excitation intensities , 1976 .

[25]  G. Fishman,et al.  Band structure and optical gain of tensile-strained germanium based on a 30 band k⋅p formalism , 2010 .

[26]  Jesse Lu,et al.  Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators , 2010 .

[27]  Controlling strain in Ge on Si for EA modulators , 2011, 8th IEEE International Conference on Group IV Photonics.

[28]  J. Michel,et al.  Toward a Germanium Laser for Integrated Silicon Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  K. Fujiwara GROWTH AND CHARACTERIZATION , 1995 .

[30]  Ying Zhang,et al.  Optical properties of Ge self-organized quantum dots in Si , 1998 .

[31]  Yasuhiko Ishikawa,et al.  Silicidation-induced band gap shrinkage in Ge epitaxial films on Si , 2004 .

[32]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[33]  Y. Shimura,et al.  Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method , 2008 .

[34]  F. Lukes̆,et al.  Electroreflectance of Heavily Doped n -Type and p -Type Germanium near the Direct Energy Gap , 1972 .

[35]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[36]  R. Newman,et al.  Effect of Impurities on Free-Hole Infrared Absorption in p-Type Germanium , 1957 .

[37]  Harry A. Atwater,et al.  INTERBAND TRANSITIONS IN SNXGE1-X ALLOYS , 1997 .

[38]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[39]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[40]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[41]  D. C. Houghton,et al.  Growth and characterization of Si1−xGex and Ge epilayers on (100) Si , 1988 .

[42]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[43]  V. D'costa,et al.  Perfectly tetragonal, tensile-strained Ge on Ge1−ySny buffered Si(100) , 2007 .

[44]  G. Capellini,et al.  Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers , 2011, Nanotechnology.

[45]  M. Oehme,et al.  Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes , 2012 .

[46]  Peng Huei Lim,et al.  Enhanced photoluminescence from germanium-based ring resonators , 2008 .

[47]  V. D'costa,et al.  Epitaxy-Driven Synthesis of Elemental Ge/Si Strain-Engineered Materials and Device Structures via Designer Molecular Chemistry , 2007 .

[48]  S. Chuang,et al.  Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength. , 2009, Optics express.

[49]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[50]  Jun Li,et al.  Supplementary Data 10 , 2013 .

[51]  J. M. Fedeli,et al.  Structural, electrical and optical properties of in-situ phosphorous-doped Ge layers , 2012 .

[52]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[53]  D. D. Cannon,et al.  Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications , 2005 .

[54]  Anthony J. Kenyon,et al.  OPTICAL-PROPERTIES OF PECVD ERBIUM-DOPED SILICON-RICH SILICA - EVIDENCE FOR ENERGY-TRANSFER BETWEEN SILICON MICROCLUSTERS AND ERBIUM IONS , 1994 .

[55]  Krishna C. Saraswat,et al.  Cavity-enhanced direct band electroluminescence near 1550 nm from germanium microdisk resonator diode on silicon , 2011 .

[56]  E. Fitzgerald,et al.  MICROSTRUCTURE OF ERBIUM-IMPLANTED SI , 1991 .

[57]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[58]  Sangam Chatterjee,et al.  Ultrafast nonlinear optical response of photoexcited Ge/SiGe quantum wells: Evidence for a femtosecond transient population inversion , 2009 .

[59]  C. Haas Infrared Absorption in Heavily Doped n -Type Germanium , 1962 .

[60]  Laurent Vivien,et al.  Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection , 2004 .

[61]  M. Oehme,et al.  Room Temperature Direct Band-Gap Emission from an Unstrained Ge P-I-N LED on Si , 2011 .

[62]  Peng Huei Lim,et al.  Enhanced direct bandgap emission in germanium by micromechanical strain engineering. , 2009, Optics express.

[63]  R. A. Logan,et al.  Properties of Heavily Doped n‐Type Germanium , 1961 .

[64]  Nobuyoshi Koshida,et al.  Visible electroluminescence from porous silicon , 1992 .

[65]  Yasuhiko Ishikawa,et al.  Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications , 2004 .

[66]  Jurgen Michel,et al.  Ge-on-Si optoelectronics , 2012 .

[67]  Yasuhiko Ishikawa,et al.  Strain-induced band gap shrinkage in Ge grown on Si substrate , 2003 .

[68]  H. Schweizer,et al.  Direct gap recombination in germanium at high excitation level and low temperature , 1978 .

[69]  J. Poate,et al.  Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .

[70]  J. Michel,et al.  Optical characterization of Ge-on-Si laser gain media , 2011, 8th IEEE International Conference on Group IV Photonics.