Rare variant associations with plasma protein levels in the UK Biobank

J. Harrow | R. Dhindsa | I. Tachmazidou | A. Harper | M. Pangalos | D. Muthas | Meeta Maisuria-Armer | A. Zehir | H. Runz | A. Raies | Quanli Wang | Z. Lai | B. Dougherty | E. Michaëlsson | V. Hristova | C. Haefliger | Maria Ryaboshapkina | M. Hammar | G. Lassi | Z. Fairhurst-Hunter | H. Olsson | Fengyuan Hu | D. Vitsios | Katherine R Smith | Kieren T. Lythgow | Sebastian Wasilewski | X. R. Ros | A. Walentinsson | E. Oerton | Y. Ohne | Christopher D. Whelan | R. F. Danielson | Xiao Jiang | A. Platt | B. Challis | A. Reznichenko | Coralie Viollet | Kousik Kundu | Carl Barrett | Maria Belvisi | Suzanne Cohen | Andrew Davis | B. Georgi | Carla Martins | Zoe Zou | L. Cazares | B. Sun | Niedzica Camacho | Mohammad Bohlooly-Y | Mike Snowden | Euan A. Ashley | A. O'Neill | S. Petrovski | Qing-Dong Wang | Ruth March | Abhishek Nag | William Rae | Bram P Prins | Eleanor Wheeler | K. Carss | Jonathan Mitchell | Mark Lal | Ben Sidders | Dirk S. Paul | Pernille B. L. Hansen | S. V. Deevi | Oliver Burren | Haeyam Taiy | Margarete A. Fabre | D. Matelska | Rasmus Lauren Santosh David Carl Maria Mohammad Lisa Nied Ågren Anderson-Dring Atanur Baker Barrett | Rasmus Ågren | Lauren Anderson-Dring | Santosh Atanur | David Baker | Lisa Buvall | Sophia Cameron-Christie | Morris Chen | Shikta Das | Wei Ding | M. Garg | Carmen Guerrero Rangel | Richard N. Hanna | Ian Henry | Sonja Hess | Ben Hollis | Yupu Liang | Margarida Lopes | Stewart MacArthur | Karine Megy | Rob Menzies | Fiona Middleton | Bill Mowrey | Sean O’Dell | K. Ostridge | Benjamin Pullman | Hitesh Sanganee | Stasa Stankovic | Helen Stevens | Lifeng Tian | Christina Underwood

[1]  Benjamin B. Sun,et al.  Plasma proteomic associations with genetics and health in the UK Biobank , 2023, Nature.

[2]  B. Ebert,et al.  Clonal haematopoiesis and dysregulation of the immune system , 2023, Nature Reviews Immunology.

[3]  N. Stitziel,et al.  SVEP1 is an endogenous ligand for the orphan receptor PEAR1 , 2023, Nature Communications.

[4]  R. Dhindsa,et al.  Effects of protein-coding variants on blood metabolite measurements and clinical biomarkers in the UK Biobank , 2023, American journal of human genetics.

[5]  Elena A. Westeinde,et al.  The gut commensal Blautia maintains colonic mucus function under low-fiber consumption through secretion of short-chain fatty acids , 2022, bioRxiv.

[6]  Thomas Leibing,et al.  Targeting of Scavenger Receptors Stabilin-1 and Stabilin-2 Ameliorates Atherosclerosis by a Plasma Proteome Switch Mediating Monocyte/Macrophage Suppression , 2022, Circulation.

[7]  D. M. Smith,et al.  Human genetics uncovers MAP3K15 as an obesity-independent therapeutic target for diabetes , 2022, Science advances.

[8]  Dereje D. Jima,et al.  Identification and single-base gene-editing functional validation of a cis-EPO variant as a genetic predictor for EPO-increasing therapies , 2022, American journal of human genetics.

[9]  James E. DiCarlo,et al.  A minimal role for synonymous variation in human disease , 2022, bioRxiv.

[10]  Jianzhi Zhang,et al.  Synonymous mutations in representative yeast genes are mostly strongly non-neutral , 2022, Nature.

[11]  Bjarni V. Halldórsson,et al.  Large-scale integration of the plasma proteome with genetics and disease , 2021, Nature Genetics.

[12]  E. Zeggini,et al.  Mapping the serum proteome to neurological diseases using whole genome sequencing , 2021, Nature Communications.

[13]  Michael E. Hall,et al.  Whole Genome Sequence Analysis of the Plasma Proteome in Black Adults Provides Novel Insights Into Cardiovascular Disease , 2021, Circulation.

[14]  Aidan N. Gomez,et al.  Disease variant prediction with deep generative models of evolutionary data , 2021, Nature.

[15]  E. Gamazon,et al.  Mapping the proteo-genomic convergence of human diseases , 2021, Science.

[16]  Sri V. V. Deevi,et al.  Rare variant contribution to human disease in 281,104 UK Biobank exomes , 2021, Nature.

[17]  Stefan Enroth,et al.  Contribution of rare whole-genome sequencing variants to plasma protein levels and the missing heritability , 2021, Nature Communications.

[18]  Dominic Winter,et al.  Targeted Quantification of the Lysosomal Proteome in Complex Samples , 2021, Proteomes.

[19]  Astrid Gall,et al.  Ensembl 2021 , 2020, Nucleic Acids Res..

[20]  Alexander E. Lopez,et al.  Exome sequencing and characterization of 49,960 individuals in the UK Biobank , 2020, Nature.

[21]  J. Danesh,et al.  Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals , 2020, Nature Metabolism.

[22]  M. McCarthy,et al.  Genetics meets proteomics: perspectives for large population-based studies , 2020, Nature reviews. Genetics.

[23]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[24]  Dominic Winter,et al.  Comprehensive draft of the mouse embryonic fibroblast lysosomal proteome by mass spectrometry based proteomics , 2020, Scientific Data.

[25]  R. Larson,et al.  Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. , 2019, The New England journal of medicine.

[26]  D. Goldstein,et al.  Rare-variant collapsing analyses for complex traits: guidelines and applications , 2019, Nature Reviews Genetics.

[27]  Mark R. Hurle,et al.  Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases , 2019, bioRxiv.

[28]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[29]  Ivan K. Chinn,et al.  Identifying Genes Whose Mutant Transcripts Cause Dominant Disease Traits by Potential Gain-of-Function Alleles. , 2018, American journal of human genetics.

[30]  Paolo Vineis,et al.  Prediction of acute myeloid leukaemia risk in healthy individuals , 2018, Nature.

[31]  Stephen Burgess,et al.  Genomic atlas of the human plasma proteome , 2018, Nature.

[32]  Alexander E. Lopez,et al.  A Protein‐Truncating HSD17B13 Variant and Protection from Chronic Liver Disease , 2018, The New England journal of medicine.

[33]  R. Skoda,et al.  A Gain‐of‐Function Mutation in EPO in Familial Erythrocytosis , 2018, The New England journal of medicine.

[34]  Matthew Collin,et al.  Human dendritic cell subsets: an update , 2018, Immunology.

[35]  Chunlei Liu,et al.  ClinVar: improving access to variant interpretations and supporting evidence , 2017, Nucleic Acids Res..

[36]  Jake Siegel,et al.  Genetics of trans-regulatory variation in gene expression , 2017, bioRxiv.

[37]  David J Balding,et al.  Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation , 2017, Genome research.

[38]  Matthew Traylor,et al.  ukbtools: An R package to manage and query UK Biobank data , 2017, bioRxiv.

[39]  D. Goldstein,et al.  An Exome Sequencing Study to Assess the Role of Rare Genetic Variation in Pulmonary Fibrosis , 2017, American journal of respiratory and critical care medicine.

[40]  C. Bloomfield,et al.  Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation , 2017, The New England journal of medicine.

[41]  S. Gabriel,et al.  Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease , 2017, The New England journal of medicine.

[42]  S. Kornfeld,et al.  Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy , 2017, Molecular therapy. Methods & clinical development.

[43]  Trevor Hastie,et al.  REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. , 2016, American journal of human genetics.

[44]  Brent S. Pedersen,et al.  Who’s Who? Detecting and Resolving Sample Anomalies in Human DNA Sequencing Studies with Peddy , 2016, bioRxiv.

[45]  D. Goldstein,et al.  Unequal representation of genetic variation across ancestry groups creates healthcare inequality in the application of precision medicine , 2016, Genome Biology.

[46]  Tanya M. Teslovich,et al.  Prosaposin is a regulator of progranulin levels and oligomerization , 2016, Nature Communications.

[47]  Piero Carninci,et al.  A draft network of ligand–receptor-mediated multicellular signalling in human , 2015, Nature Communications.

[48]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[49]  E. Meffre,et al.  Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation , 2014, Nature Genetics.

[50]  D. Altshuler,et al.  Validating therapeutic targets through human genetics , 2013, Nature Reviews Drug Discovery.

[51]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[52]  G. Abecasis,et al.  Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. , 2012, American journal of human genetics.

[53]  Katherine R. Smith,et al.  Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. , 2012, American journal of human genetics.

[54]  M. Prata,et al.  Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. , 2012, Molecular genetics and metabolism.

[55]  S. Goerdt,et al.  Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. , 2011, The Journal of clinical investigation.

[56]  Josyf Mychaleckyj,et al.  Robust relationship inference in genome-wide association studies , 2010, Bioinform..

[57]  H. Kantarjian,et al.  Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. , 2010, Leukemia research.

[58]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[59]  Alan Aderem,et al.  Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf , 2006, Nature Immunology.

[60]  D. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[61]  R. Eddy,et al.  Comparative structure, proximal promoter elements, and chromosome location of the human eosinophil major basic protein genes. , 2001, Genomics.

[62]  B. Roe,et al.  Molecular basis of variant pseudo-hurler polydystrophy (mucolipidosis IIIC) , 2000, The Journal of clinical investigation.

[63]  M. Colonna,et al.  Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. , 1995, Science.

[64]  M. Ratajczak,et al.  STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[65]  K. Kretz,et al.  Characterization of a mutation in a family with saposin B deficiency: a glycosylation site defect. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[66]  G. Gleich,et al.  Activation of basophil and mast cell histamine release by eosinophil granule major basic protein , 1983, The Journal of experimental medicine.

[67]  Fenghua Hu,et al.  Frontotemporal lobar degeneration (FTLD) is the most prevalent early-onset dementia after Alzheimer’s disease (AD) and accounts for 20–25% of pre-senile dementias , 2017 .

[68]  E. Kelly,et al.  an update on , 2014 .

[69]  C. Schaefer,et al.  20.453j / 2.771j / Hst.958j Biomedical Information Technology Pid: the Pathway Interaction Database , 2022 .

[70]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[71]  Carol J. Bult,et al.  The Mouseion at the JAXlibrary , 2022 .