Data-Driven Compression and Efficient Learning of the Choquet Integral

The Choquet integral (ChI) is a parametric nonlinear aggregation function defined with respect to the fuzzy measure (FM). To date, application of the ChI has sadly been restricted to problems with relatively few numbers of inputs; primarily as the FM has <inline-formula><tex-math notation="LaTeX">$2^N$</tex-math></inline-formula> variables for <inline-formula><tex-math notation="LaTeX">$N$</tex-math></inline-formula> inputs and <inline-formula> <tex-math notation="LaTeX">$N(2^{N-1}-1)$</tex-math></inline-formula> monotonicity constraints. In return, the community has turned to density-based imputation (e.g., Sugeno <inline-formula><tex-math notation="LaTeX">$\lambda$ </tex-math></inline-formula>-FM) or the number of <italic>interactions</italic> (FM variables) are restricted (e.g., <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>-additivity). Herein, we propose a new scalable data-driven way to represent and learn the ChI, making learning computationally manageable for larger <inline-formula><tex-math notation="LaTeX">$N$</tex-math></inline-formula>. First, data supported variables are identified and used in optimization. Identification of these variables also allows us recognize future ill-posed fusion scenarios; ChIs involving variable subsets not supported by data. Second, we outline an imputation function framework to address data unsupported variables. Third, we present a lossless way to compress redundant variables and associated monotonicity constraints. Finally, we outline a lossy approximation method to further compress the ChI (if/when desired). Computational complexity analysis and experiments conducted on synthetic datasets with known FMs demonstrate the effectiveness and efficiency of the proposed theory.

[1]  Eyke Hüllermeier,et al.  Learning Monotone Nonlinear Models Using the Choquet Integral , 2011, ECML/PKDD.

[2]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[3]  M. Sugeno,et al.  Multi-attribute classification using fuzzy integral , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[4]  Christophe Labreuche,et al.  Construction of a Choquet integral and the value functions without any commensurateness assumption in multi-criteria decision making , 2011, EUSFLAT Conf..

[5]  Paul D. Gader,et al.  Sparsity Promotion Models for the Choquet Integral , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[6]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[7]  Michio Sugeno,et al.  Fuzzy Measure and Fuzzy Integral , 1972 .

[8]  Gleb Beliakov,et al.  Construction of aggregation functions from data using linear programming , 2009, Fuzzy Sets Syst..

[9]  Kwong-Sak Leung,et al.  Classification of Heterogeneous Fuzzy Data by Choquet Integral With Fuzzy-Valued Integrand , 2007, IEEE Transactions on Fuzzy Systems.

[10]  Salvatore Greco,et al.  Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem , 2013, Eur. J. Oper. Res..

[11]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[12]  James M. Keller,et al.  Information fusion in computer vision using the fuzzy integral , 1990, IEEE Trans. Syst. Man Cybern..

[13]  Paul D. Gader,et al.  Recognition technology for the detection of buried land mines , 2001, IEEE Trans. Fuzzy Syst..

[14]  Michel Grabisch,et al.  A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..

[15]  Timothy C. Havens,et al.  Efficient Multiple Kernel Classification Using Feature and Decision Level Fusion , 2017, IEEE Transactions on Fuzzy Systems.

[16]  Michel Grabisch,et al.  Classification by fuzzy integral: performance and tests , 1994, CVPR 1994.

[17]  Timothy C. Havens,et al.  Regularization-based learning of the Choquet integral , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[18]  Salvatore Greco,et al.  Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..

[19]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[20]  G. Choquet Theory of capacities , 1954 .

[21]  Humberto Bustince,et al.  On the definition of penalty functions in data aggregation , 2017, Fuzzy Sets Syst..

[22]  P. Gader,et al.  Advances in fuzzy integration for pattern recognition , 1994, CVPR 1994.

[23]  James M. Keller,et al.  Training the fuzzy integral , 1996, Int. J. Approx. Reason..

[24]  Oscar Castillo,et al.  Face Recognition With an Improved Interval Type-2 Fuzzy Logic Sugeno Integral and Modular Neural Networks , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[25]  Paul D. Gader,et al.  Minimum Classification Error Training for Choquet Integrals With Applications to Landmine Detection , 2008, IEEE Transactions on Fuzzy Systems.

[26]  Gang Li,et al.  Learning Choquet-Integral-Based Metrics for Semisupervised Clustering , 2011, IEEE Transactions on Fuzzy Systems.

[27]  Michel Grabisch,et al.  Fuzzy integral for classification and feature extraction , 2000 .

[28]  Jung-Hsien Chiang,et al.  Choquet fuzzy integral-based hierarchical networks for decision analysis , 1999, IEEE Trans. Fuzzy Syst..

[29]  James M. Keller,et al.  Extension of the Fuzzy Integral for General Fuzzy Set-Valued Information , 2014, IEEE Transactions on Fuzzy Systems.

[30]  Eyke Hüllermeier,et al.  Choquistic Regression: Generalizing Logistic Regression using the Choquet Integral , 2011, EUSFLAT Conf..

[31]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Eyke Hüllermeier,et al.  Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking , 2012, IEEE Transactions on Fuzzy Systems.

[33]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..