Refinements and Symmetries of the Morris identity for volumes of flow polytopes
暂无分享,去创建一个
[1] David P. Robbins,et al. On the Volume of a Certain Polytope , 1998, Exp. Math..
[2] Robert A. Proctor. New Symmetric Plane Partition Identities from Invariant Theory Work of De Concini and Procesi , 1990, Eur. J. Comb..
[3] Karola Mészáros,et al. On Flow Polytopes, Order Polytopes, and Certain Faces of the Alternating Sign Matrix Polytope , 2015, Discret. Comput. Geom..
[4] Karola Mészáros. Product formulas for volumes of flow polytopes , 2011, 1111.5634.
[5] S. Ole Warnaar,et al. The importance of the Selberg integral , 2007, 0710.3981.
[6] Kenneth H. Rosen,et al. Catalan Numbers , 2002 .
[7] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[8] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[9] Michele Vergne,et al. Residues formulae for volumes and Ehrhart polynomials of convex polytopes. , 2001, math/0103097.
[10] Alexander Postnikov,et al. Permutohedra, Associahedra, and Beyond , 2005, math/0507163.
[11] Coherent fans in the space of flows in framed graphs , 2012 .
[12] Quivers , 2021, A Gentle Introduction to Homological Mirror Symmetry.
[13] Martha Yip,et al. A Unifying Framework for the ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-Tamari Lattice and , 2021, Combinatorica.
[14] Martha Yip. A Fuss-Catalan variation of the caracol flow polytope , 2019, 1910.10060.
[15] Quivers, cones and polytopes , 2003 .
[16] M. Vergne,et al. Morris identities and the total residue for a system of type A r , 2004 .
[17] M. Vergne,et al. Kostant Partitions Functions and Flow Polytopes , 2008 .
[18] Ricky Ini Liu,et al. Gelfand-Tsetlin polytopes: a story of flow and order polytopes , 2019, 1903.08275.
[19] A. Postnikov,et al. Trianguloids and triangulations of root polytopes , 2018, J. Comb. Theory A.
[20] P. Alam,et al. R , 1823, The Herodotus Encyclopedia.
[21] Christopher R. H. Hanusa,et al. A combinatorial model for computing volumes of flow polytopes , 2018, Transactions of the American Mathematical Society.
[22] Kabir Kapoor,et al. Counting Integer Points of Flow Polytopes , 2019, Discret. Comput. Geom..
[24] K. Aomoto,et al. Jacobi polynomials associated with Selberg integrals , 1987 .
[25] Jang Soo Kim,et al. Volumes of Flow Polytopes Related to Caracol Graphs , 2020, Electron. J. Comb..
[26] J. Kim,et al. Flow polytopes with Catalan volumes , 2016, 1612.00102.
[27] M. Bauer,et al. Triangulations , 1996, Discret. Math..
[28] I. Pak,et al. Asymptotics of principal evaluations of Schubert polynomials for layered permutations , 2018, Proceedings of the American Mathematical Society.
[29] Avery St. Dizier,et al. From generalized permutahedra to Grothendieck polynomials via flow polytopes , 2017, Algebraic Combinatorics.
[30] Karola M'esz'aros,et al. Subword complexes via triangulations of root polytopes , 2015, 1502.03997.
[31] K. Mészáros,et al. The polytope of Tesler matrices , 2014, 1409.8566.
[32] Alexander Haupt. Combinatorial proof of Selberg's integral formula , 2020, J. Comb. Theory, Ser. A.
[33] Greta Panova,et al. Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.
[34] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[35] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.