Refinements and Symmetries of the Morris identity for volumes of flow polytopes

Flow polytopes are an important class of polytopes in combinatorics whose lattice points and volumes have interesting properties and relations. The Chan–Robbins–Yuen (CRY) polytope is a flow polytope with normalized volume equal to the product of consecutive Catalan numbers. Zeilberger proved this by evaluating the Morris constant term identity, but no combinatorial proof is known. There is a refinement of this formula that splits the largest Catalan number into Narayana numbers, which Mészáros gave an interpretation as the volume of a collection of flow polytopes. We introduce a new refinement of the Morris identity with combinatorial interpretations both in terms of lattice points and volumes of flow polytopes. Our results generalize Mészáros’s construction and a recent flow polytope interpretation of the Morris identity by Corteel–Kim–Mészáros. We prove the product formula of our refinement following the strategy of the Baldoni–Vergne proof of the Morris identity. Lastly, we study a symmetry of the Morris identity bijectively using the Danilov–Karzanov–Koshevoy triangulation of flow polytopes and a bijection of Mészáros–Morales– Striker. Funding. This research was made possible by MIT PRIMES-USA 2020 program. Alejandro Morales was partially supported by the NSF Grant DMS-1855536. Manuscript received 9th March 2021, revised and accepted 26th April 2021.

[1]  David P. Robbins,et al.  On the Volume of a Certain Polytope , 1998, Exp. Math..

[2]  Robert A. Proctor New Symmetric Plane Partition Identities from Invariant Theory Work of De Concini and Procesi , 1990, Eur. J. Comb..

[3]  Karola Mészáros,et al.  On Flow Polytopes, Order Polytopes, and Certain Faces of the Alternating Sign Matrix Polytope , 2015, Discret. Comput. Geom..

[4]  Karola Mészáros Product formulas for volumes of flow polytopes , 2011, 1111.5634.

[5]  S. Ole Warnaar,et al.  The importance of the Selberg integral , 2007, 0710.3981.

[6]  Kenneth H. Rosen,et al.  Catalan Numbers , 2002 .

[7]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[8]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[9]  Michele Vergne,et al.  Residues formulae for volumes and Ehrhart polynomials of convex polytopes. , 2001, math/0103097.

[10]  Alexander Postnikov,et al.  Permutohedra, Associahedra, and Beyond , 2005, math/0507163.

[11]  Coherent fans in the space of flows in framed graphs , 2012 .

[12]  Quivers , 2021, A Gentle Introduction to Homological Mirror Symmetry.

[13]  Martha Yip,et al.  A Unifying Framework for the ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-Tamari Lattice and , 2021, Combinatorica.

[14]  Martha Yip A Fuss-Catalan variation of the caracol flow polytope , 2019, 1910.10060.

[15]  Quivers, cones and polytopes , 2003 .

[16]  M. Vergne,et al.  Morris identities and the total residue for a system of type A r , 2004 .

[17]  M. Vergne,et al.  Kostant Partitions Functions and Flow Polytopes , 2008 .

[18]  Ricky Ini Liu,et al.  Gelfand-Tsetlin polytopes: a story of flow and order polytopes , 2019, 1903.08275.

[19]  A. Postnikov,et al.  Trianguloids and triangulations of root polytopes , 2018, J. Comb. Theory A.

[20]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[21]  Christopher R. H. Hanusa,et al.  A combinatorial model for computing volumes of flow polytopes , 2018, Transactions of the American Mathematical Society.

[22]  Kabir Kapoor,et al.  Counting Integer Points of Flow Polytopes , 2019, Discret. Comput. Geom..

[24]  K. Aomoto,et al.  Jacobi polynomials associated with Selberg integrals , 1987 .

[25]  Jang Soo Kim,et al.  Volumes of Flow Polytopes Related to Caracol Graphs , 2020, Electron. J. Comb..

[26]  J. Kim,et al.  Flow polytopes with Catalan volumes , 2016, 1612.00102.

[27]  M. Bauer,et al.  Triangulations , 1996, Discret. Math..

[28]  I. Pak,et al.  Asymptotics of principal evaluations of Schubert polynomials for layered permutations , 2018, Proceedings of the American Mathematical Society.

[29]  Avery St. Dizier,et al.  From generalized permutahedra to Grothendieck polynomials via flow polytopes , 2017, Algebraic Combinatorics.

[30]  Karola M'esz'aros,et al.  Subword complexes via triangulations of root polytopes , 2015, 1502.03997.

[31]  K. Mészáros,et al.  The polytope of Tesler matrices , 2014, 1409.8566.

[32]  Alexander Haupt Combinatorial proof of Selberg's integral formula , 2020, J. Comb. Theory, Ser. A.

[33]  Greta Panova,et al.  Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.

[34]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[35]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.