High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation

We obtained global sea-level (eustatic) estimates with a peak of ~22 m higher than present for the Pliocene interval 2.7–3.2 Ma from backstripping in Virginia (United States), New Zealand, and Enewetak Atoll (north Pacifi c Ocean), benthic foraminiferal δ 18 O values, and Mg/Ca-δ 18 O estimates. Statistical analysis indicates that it is likely (68% confi dence interval) that peak sea level was 22 ± 5 m higher than modern, and extremely likely (95%) that it was 22 ± 10 m higher than modern. Benthic foraminiferal δ 18 O values appear to require that the peak was <20–21 m. Our estimates imply loss of the equivalent of the Greenland and West Antarctic ice sheets, and some volume loss from the East Antarctic Ice Sheet, and address the longstanding controversy concerning the Pliocene stability of the East Antarctic Ice Sheet.

[1]  K. Miller,et al.  A 180-Million-Year Record of Sea Level and Ice Volume Variations from Continental Margin and Deep-Sea Isotopic Records , 2011 .

[2]  Maureen E. Raymo,et al.  Departures from eustasy in Pliocene sea-level records , 2011 .

[3]  Y. Rosenthal,et al.  Deep-Sea Temperature and Ice Volume Changes Across the Pliocene-Pleistocene Climate Transitions , 2009, Science.

[4]  Eelco J. Rohling,et al.  Antarctic temperature and global sea level closely coupled over the past five glacial cycles , 2009 .

[5]  M. Raymo,et al.  PLIOMAX: Pliocene maximum sea level project , 2009 .

[6]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[7]  G. Kuhn,et al.  Obliquity-paced Pliocene West Antarctic ice sheet oscillations , 2009, Nature.

[8]  M. Chandler,et al.  Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  G. Wilson,et al.  Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  David S. Powars,et al.  Impact effects and regional tectonic insights: Backstripping the Chesapeake Bay impact structure , 2008 .

[11]  A. Ashworth,et al.  Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains , 2007 .

[12]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[13]  C. Ritz,et al.  Global budget of water isotopes inferred from polar ice sheets , 2005 .

[14]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[15]  Caroline H. Lear,et al.  Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle , 2004 .

[16]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[17]  David G. Vaughan,et al.  BEDMAP: a new ice thickness and subglacial topographic model of Antarctica , 2001 .

[18]  W. R. Peltier,et al.  Postglacial variations in the level of the sea: Implications for climate dynamics and solid‐Earth geophysics , 1998 .

[19]  T. Naish Constraints on the amplitude of late Pliocene eustatic sea-level fluctuations: New evidence from the New Zealand shallow-marine sediment record , 1997 .

[20]  Harry J. Dowsett,et al.  High eustatic sea level during the middle Pliocene:Evidence from the southeastern U.S. Atlantic Coastal Plain , 1990 .

[21]  R. Fairbanks,et al.  The Marine Oxygen Isotope Record in Pleistocene Coral, Barbados, West Indies , 1978, Quaternary Research.

[22]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[23]  Andrew A. Kulpecz,et al.  Integrated sequence stratigraphy of the postimpact sediments from the Eyreville core holes, Chesapeake Bay impact structure inner basin , 2009 .

[24]  Andrew A. Kulpecz,et al.  Postimpact deposition in the Chesapeake Bay impact structure: Variations in eustasy, compaction, sediment supply, and passive-aggressive tectonism , 2009 .

[25]  Andrew A. Kulpecz Sequence stratigraphy of the mid-Atlantic coastal plain: An evaluation of eustasy, sediment supply variations, and passive-aggressive tectonism , 2008 .

[26]  H. Dowsett The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature , 2007 .

[27]  R. DeConto,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[28]  R. S. Thompson,et al.  Middle Pliocene paleoenvironmental reconstruction; PRISM2 , 1999 .

[29]  D. Hodell,et al.  Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene , 1995 .

[30]  G. Denton,et al.  Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica , 1993 .

[31]  J. Brigham‐Grette,et al.  Pliocene Marine Transgressions of Northern Alaska: Circumarctic Correlations and Paleoclimatic Interpretations' , 1992 .

[32]  P. Webb,et al.  Late Cenozoic glacial history of the Ross embayment, Antarctica , 1991 .

[33]  T. Quinn,et al.  The record of Pliocene sea-level change at Enewetak Atoll , 1991 .