Second-order discretization schemes of stochastic differential systems for the computation of the invariant law

We Discretize in Time With Step-Size h a Stochastic Differential Equation Whose Solution has a Unique Invariant Probability Measure is the Solution of the Discretized System, we Give an Estimate of in Terms of h for Several Discretization Methods. In Particular, Methods Which are of Second Order for the Approximation of in Finite Time are Shown to be Generically of Second Order for the Ergodic Criterion(1).

[1]  R. Tweedie Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .

[2]  G. N. Mil’shtejn Approximate Integration of Stochastic Differential Equations , 1975 .

[3]  G. Mil’shtein A Method of Second-Order Accuracy Integration of Stochastic Differential Equations , 1979 .

[4]  Stochastic differential systems : filtering and control : proceedings of the IFIP-WG 7/1 working conference, Vilnius, Lithuania, USSR, Aug. 28-Sept. 2, 1978 , 1980 .

[5]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[6]  Wendell H. Fleming,et al.  Advances in Filtering and Optimal Stochastic Control , 1982 .

[7]  W. Rüemelin Numerical Treatment of Stochastic Differential Equations , 1982 .

[8]  J. M. Clark,et al.  An efficient approximation scheme for a class of stochastic differential equations , 1982 .

[9]  Advances in filtering and optimal stochastic control : proceedings of the IFIP-WG 7/1 working conference, Cocoyoc, Mexico, February 1-6, 1982 , 1982 .

[10]  R. Tweedie The existence of moments for stationary Markov chains , 1983, Journal of Applied Probability.

[11]  Denis Talay,et al.  Resolution trajectorielle et analyse numerique des equations differentielles stochastiques , 1983 .

[12]  R. Fortet,et al.  Théorème de limite centrale pour une diffusion et pour sa discrétisée , 1984 .

[13]  E. Nummelin General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .

[14]  Gerald Mazziotto,et al.  Filtering and Control of Random Processes , 1984 .

[15]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[16]  Etienne Pardoux,et al.  Asymptotic analysis of P.D.E.s with wide–band noise disturbances, and expansion of the moments , 1984 .

[17]  F. Marchetti,et al.  Simulation of diffusions with boundary conditions , 1984 .

[18]  H. Kunita Stochastic differential equations and stochastic flows of diffeomorphisms , 1984 .

[19]  J. Szpirglas,et al.  Filtering and control of random processes : proceedings of the E.N.S.T.-C.N.E.T. colloquium, Paris, France, February 23-24, 1983 , 1984 .

[20]  D. Talay,et al.  Discretization and simulation of stochastic differential equations , 1985 .

[21]  E. Pardoux,et al.  Stochastic Differential Systems: Filtering and Control , 1985 .

[22]  G. Mil’shtein Weak Approximation of Solutions of Systems of Stochastic Differential Equations , 1986 .

[23]  D. Talay Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution , 1986 .

[24]  Nigel J. Newton An asymptotically efficient difference formula for solving stochastic differential equations , 1986 .

[25]  Denis Talay,et al.  Approximation of upper Lyapunov exponents of bilinear stochastic differential systems , 1991 .