A Chebyshev-Gauss-Radau Scheme For Nonlinear Hyperbolic System Of First Order

A numerical approximation of the initial-boundary system of nonlinear hyperbolic equations based on spectral collocation method is presented in this article. A Chebyshev-Gauss-Radau collocation (C-GR-C) method in combination with the implicit Runge- Kutta scheme are employed to obtain highly accurate approximations to the mentioned problem. The collocation points are the Chebyshev interpolation nodes. This approach reduces this problem to solve system of nonlinear ordinary differential equations which are far easier to be solved. Indeed, by selecting a limited number of colloc ation nodes, we obtain an accurate results. The numerical examples demonstrate the accuracy, efficiency, and versatility of the me thod.

[1]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[2]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .

[3]  Ali H. Bhrawy,et al.  A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals , 2012 .

[4]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[5]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[6]  Božidar V. Popović,et al.  Mathematical and Computer Modelling , 2011 .

[7]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[8]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[9]  H. Breusers,et al.  Applied Mathematical Modelling , 1976 .

[10]  J. Carifio,et al.  Nonlinear Analysis , 1995 .

[11]  R. Toupin ELASTIC MATERIALS WITH COUPLE STRESSES, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS , 1962 .

[12]  A. N. Other A demonstration of the L A T E X2ε class file for the International Journal for Numerical Methods in Fluids , 2010 .

[13]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[14]  Jaromír Slavík,et al.  COMPUTATIONAL MECHANICS I , 2004 .

[15]  T. A. Zang,et al.  Spectral Methods for Partial Differential Equations , 1984 .

[16]  Barbara Zitov a Journal of the Franklin Institute , 1942, Nature.

[17]  Wen Lea Pearn,et al.  (Journal of Computational and Applied Mathematics,228(1):274-278)Optimization of the T Policy M/G/1 Queue with Server Breakdowns and General Startup Times , 2009 .

[18]  Henk A. van der Vorst,et al.  Numerical Algorithms , 2011, Encyclopedia of Parallel Computing.

[19]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .