Violating the Shannon capacity of metric graphs with entanglement

The Shannon capacity of a graph G is the maximum asymptotic rate at which messages can be sent with zero probability of error through a noisy channel with confusability graph G. This extensively studied graph parameter disregards the fact that on atomic scales, nature behaves in line with quantum mechanics. Entanglement, arguably the most counterintuitive feature of the theory, turns out to be a useful resource for communication across noisy channels. Recently [Leung D, Mančinska L, Matthews W, Ozols M, Roy A (2012) Commun Math Phys 311:97–111], two examples of graphs were presented whose Shannon capacity is strictly less than the capacity attainable if the sender and receiver have entangled quantum systems. Here, we give natural, possibly infinite, families of graphs for which the entanglement-assisted capacity exceeds the Shannon capacity.

[1]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[2]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[3]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[4]  David Avis,et al.  A Quantum Protocol to Win the Graph Colouring Game on All Hadamard Graphs , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[5]  Michael Shao,et al.  The Occurrence Rate of Earth Analog Planets Orbiting Sunlike Stars , 2011 .

[6]  R. Paley On Orthogonal Matrices , 1933 .

[7]  Jonathan L. Alperin,et al.  Groups and Representations , 1995 .

[8]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  Chris D. Godsil,et al.  Coloring an Orthogonality Graph , 2008, SIAM J. Discret. Math..

[10]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[11]  Wesley A. Traub,et al.  TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER , 2011, 1109.4682.

[12]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[13]  D. Leung,et al.  Entanglement can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels , 2010, Communications in Mathematical Physics.

[14]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[15]  Rudolf Lide,et al.  Finite fields , 1983 .

[16]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[17]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[18]  S. Severini,et al.  New Separations in Zero-Error Channel Capacity Through Projective Kochen–Specker Sets and Quantum Coloring , 2012, IEEE Transactions on Information Theory.

[19]  Femke Bekius,et al.  The Shannon Capacity of a Graph , 2011 .

[20]  Robert Brignall Wreath Products of Permutation Classes , 2007, Electron. J. Comb..

[21]  M. Behbahani On orthogonal matrices , 2004 .

[22]  Simone Severini,et al.  On the Quantum Chromatic Number of a Graph , 2007, Electron. J. Comb..

[23]  Simone Severini,et al.  New Separations in Zero-Error Channel Capacity Through Projective Kochen–Specker Sets and Quantum Coloring , 2013, IEEE Transactions on Information Theory.

[24]  Debbie W. Leung,et al.  Improving zero-error classical communication with entanglement , 2009, Physical review letters.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[27]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[28]  C. Brenner,et al.  p53 Activation by Knockdown Technologies , 2007, PLoS genetics.

[29]  David G. Wilkinson,et al.  Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development , 2011, Developmental biology.