Models of sharing graphs : a categorical semantics of let and letrec

From the Publisher: Models of Sharing Graphs presents a sound mathematical basis for reasoning about models of computation involving shared resources, including graph rewriting systems, denotational semantics and concurrency theory. An algebraic approach, based on the language of category theory, is taken throughout this work, which enables the author to describe several aspects of the notion of sharing in a systematic way. In particular, a novel account of recursive computation created from cyclic sharing is developed using this framework.

[1]  Claudio Hermida,et al.  Fibrational Control Structures , 1995, CONCUR.

[2]  Alex K. Simpson A Characterisation of the Least-Fixed-Point Operator by Dinaturality , 1993, Theor. Comput. Sci..

[3]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[4]  Jan Willem Klop,et al.  Term Graph Rewriting , 1995, HOA.

[5]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[6]  Robin Milner,et al.  Action calculi V: Reflexive molecular forms , 1993 .

[7]  Zoltán Ésik,et al.  Some varieties of iteration theories , 1984, Bull. EATCS.

[8]  A. Simpson Recursive types in Kleisli categories , 1992 .

[9]  Edmund Robinson,et al.  Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.

[10]  Robin Milner,et al.  The Polyadic π-Calculus: a Tutorial , 1993 .

[11]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[12]  Peter Selinger Order-incompleteness and finite lambda models , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[13]  Matthias Felleisen,et al.  The call-by-need lambda calculus , 1997, Journal of Functional Programming.

[14]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. A. Turner,et al.  A new implementation technique for applicative languages , 1979, Softw. Pract. Exp..

[16]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[17]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[18]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[19]  R. Milner Calculi for interaction , 1996, Acta Informatica.

[20]  John Launchbury,et al.  A natural semantics for lazy evaluation , 1993, POPL '93.

[21]  Mei Chee Shum Tortile tensor categories , 1994 .

[22]  G. M. Kelly,et al.  A universal property of the convolution monoidal structure , 1986 .

[23]  Martin Odersky,et al.  Call-by-name, Call-by-value, Call-by-need and the Linear lambda Calculus , 1999, Theor. Comput. Sci..

[24]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[25]  Philippa Gardner,et al.  Types and Models for Higher-Order Action Calculi , 1997, TACS.

[26]  Matthias Felleisen,et al.  A call-by-need lambda calculus , 1995, POPL '95.

[27]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[28]  Torben Braüner,et al.  The Girard Translation Extended with Recursion , 1994, CSL.

[29]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[30]  Marko C. J. D. van Eekelen,et al.  Term Graph Rewriting , 1987, PARLE.

[31]  Zena M. Ariola,et al.  Equational Term Graph Rewriting , 1996, Fundam. Informaticae.

[32]  B. Day On closed categories of functors , 1970 .

[33]  Zena M. Ariola,et al.  Cyclic lambda graph rewriting , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[34]  G. M. Kelly Many-variable functorial calculus. I. , 1972 .

[35]  John Power Elementary Control Structures , 1996, CONCUR.

[36]  Philippa Gardner,et al.  A name-free account of action calculi , 1995, MFPS.

[37]  D. Walker,et al.  A Calculus of Mobile Processes, Part Ii , 1989 .

[38]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[39]  Masahito Hasegawa,et al.  Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.

[40]  Philippa Gardner,et al.  From Action Calculi to Linear Logic , 1997, CSL.

[41]  Hayo Thielecke Continuation Passing Style and Self-Adjointness , 1996 .

[42]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[43]  A. Kock Strong functors and monoidal monads , 1972 .

[44]  Philip Wadler,et al.  Linear logic, monads and the lambda calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[45]  Stefan Blom,et al.  Cyclic Lambda Calculi , 1997, TACS.

[46]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[47]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[48]  Alex K. Simpson Categorical completeness results for the simply-typed lambda-calculus , 1995, TLCA.

[49]  Matthias Felleisen,et al.  The seasoned schemer , 1995 .

[50]  M. J. Plasmeijer,et al.  Term graph rewriting: theory and practice , 1993 .

[51]  Pierre Lescanne,et al.  Modeling Sharing and Recursion for Weak Reduction Strategies Using Explicit Substitution , 1996, PLILP.

[52]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[53]  Robin Milner,et al.  Functions as processes , 1990, Mathematical Structures in Computer Science.

[54]  P. Freyd Algebraically complete categories , 1991 .

[55]  Robin Milner,et al.  Control structures , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[56]  Robin Milner Higher-Order Action Calculi , 1993, CSL.

[57]  Andrzej Filinski,et al.  Recursion from iteration , 1994, LISP Symb. Comput..

[58]  Roy L. Crole,et al.  New Foundations for Fixpoint Computations: FIX-Hyperdoctrines and the FIX-Logic , 1992, Inf. Comput..

[59]  Andrew M. Pitts,et al.  Metalanguages and Applications , 1997 .

[60]  Zena M. Ariola,et al.  Properties of a First-Order Functional Language with Sharing , 1995, Theor. Comput. Sci..

[61]  Bart Jacobs,et al.  Fibrations with Indeterminates: Contextual and Functional Completeness for Polymorphic Lambda Calculi , 1995, Math. Struct. Comput. Sci..

[62]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[63]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[64]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .

[65]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[66]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[67]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[68]  T. Kerler On braided tensor categories , 1994, hep-th/9402018.

[69]  Zoltán Ésik,et al.  Fixed-Point Operations on ccc's. Part I , 1996, Theor. Comput. Sci..

[70]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.