Weight function based Dugdale model for mixed-mode crack problems with arbitrary crack surface tractions

Abstract Weight function theory states crack surface displacements can be found for any arbitrary distribution of mode I, or mixed-mode crack face tractions via that geometry’s weight functions. This statement is validated via finite element analysis of the infinite center-cracked plate for various mixed mode loadings. An elastic-perfectly plastic material is considered using a Dugdale approach and compared to elastic–plastic finite element simulations. The weight function method in all cases agrees well with the finite element simulations for small scale yielding at the crack tip. As the maximum traction value approaches one-half the yield strength discrepancies become larger due to violation of small scale yielding.

[1]  S. Daniewicz Accurate and efficient numerical integration of weight functions using Gauss-Chebyshev quadrature , 1994 .

[2]  G. T. Sha,et al.  Weight function calculations for mixedmode fracture problems with the virtual crack extension technique , 1985 .

[3]  G. G. Chell,et al.  Bilby, Cottrell and Swinden model solutions for centre and edge cracked plates subject to arbitrary mode I loading , 1976, International Journal of Fracture.

[4]  Satya N. Atluri,et al.  Comparison of different methods of evaluation of weight functions for 2-D mixed-mode fracture analyses , 1989 .

[5]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[6]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[7]  Leon M Keer,et al.  Fatigue Crack Growth in Mixed Mode Loading , 1991 .

[8]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[9]  D. P. Rooke,et al.  Mixed-mode Bueckner weight functions using boundary element analysis , 1987 .

[10]  Dietmar Gross,et al.  About the Dugdale crack under mixed mode loading , 1988 .

[11]  Dietmar Gross,et al.  About the mode II Dugdale crack solution , 1987, International Journal of Fracture.

[12]  H. O. Fuchs,et al.  Metal fatigue in engineering , 2001 .

[13]  M. H. Aliabadi,et al.  Boundary-element weight-function analysis for crack-surface displacements and strip-yield cracks , 1994 .

[14]  Paul C. Paris,et al.  Efficient finite element methods for stress intensity factors using weight functions , 1975 .

[15]  J. Barnby The mechanics of fracture and fatigue , 1982 .

[16]  H. Bueckner NOVEL PRINCIPLE FOR THE COMPUTATION OF STRESS INTENSITY FACTORS , 1970 .

[17]  Tsai Chwan-Huei,et al.  Weight functions of oblique edge and center cracks in finite bodies , 1990 .

[18]  D. P. Rooke,et al.  The use of fundamental fields to obtain weight functions for mixed-mode cracks , 1994 .

[19]  D. J. Cartwright,et al.  Boundary element weight function analysis of a strip yield crack in a rotating disk , 1994 .

[20]  Donald R. Houser,et al.  An elastic-plastic analytical model for predicting fatigue crack growth in arbitrary edge-cracked two-dimensional geometries with residual stress , 1994 .

[21]  Gt Sha,et al.  Determination of Mixed Mode Stress-Intensity Factors Using Explicit Weight Functions , 1988 .

[22]  Leslie Banks-Sills,et al.  An Extended Weight Function Method for Mixed-Mode Elastic Crack Analysis , 1983 .

[23]  J. Rice,et al.  Some remarks on elastic crack-tip stress fields , 1972 .

[24]  Henry Petroski,et al.  Dugdale plastic zone sizes for edge cracks , 1979, International Journal of Fracture.

[25]  Jed Lyons,et al.  Strip Yield Model Numerical Application to Different Geometries and Loading Conditions , 2005 .

[26]  J. G. Williams,et al.  A practical method for determining Dugdale model solutions for cracked bodies of arbitrary shape , 1972 .

[27]  S. Daniewicz A closed-form small-scale yielding collinear strip yield model for strain hardening materials , 1994 .

[28]  M. H. Aliabadi,et al.  Bueckner weight functions for cracks near a half-plane , 1990 .