Remote sensing from the infrared atmospheric sounding interferometer instrument 1. Compression, denoising, and first-guess retrieval algorithms

[1] A principal component analysis (PCA) scheme is developed for treatment of observations from the high spectral resolution Infrared Atmospheric Interferometer (IASI) spaceborne instrument. Compression and denoising of IASI observations are performed using this PCA. This preprocessing methodology also allows for a fast pattern recognition to obtain a first guess from a climatological data set. The performance of the compression, denoising, and multivariate first-guess retrieval are evaluated with a large diversified data set of radiosondes atmospheres including rare events. Overall, the instrumental noise in the overall observed IASI spectrum goes from 0.9 to 0.2 K after denoising. This analysis procedure will be used by Aires et al. [2002c] to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles.

[1]  Filipe Aires,et al.  Remote sensing from the infrared atmospheric sounding interferometer instrument 2. Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles , 2002 .

[2]  M. Matricardi,et al.  Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances. , 1999, Applied optics.

[3]  Adam H. Monahan,et al.  Nonlinear Principal Component Analysis by Neural Networks: Theory and Application to the Lorenz System , 2000 .

[4]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[5]  Hung-Lung Huang,et al.  Application of Principal Component Analysis to High-Resolution Infrared Measurement Compression and Retrieval , 2001 .

[6]  C. Rodgers Characterization and Error Analysis of Profiles Retrieved From Remote Sounding Measurements , 1990 .

[7]  Filipe Aires Problèmes inverses et réseaux de neurones : application à l'interféromètre haute résolution IASI et à l'analyse de séries temporelles , 1999 .

[8]  Frédéric Chevallier,et al.  Use of a neural‐network‐based long‐wave radiative‐transfer scheme in the ECMWF atmospheric model , 2000 .

[9]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Juha Karhunen,et al.  Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.

[11]  Jean-Noël Thépaut,et al.  The information content of clear sky IASI radiances and their potential for numerical weather prediction , 1998 .

[12]  Florence Rabier,et al.  Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances , 2002 .

[13]  Filipe Aires,et al.  Independent component analysis of multivariate time series: Application to the tropical SST variability , 2000 .

[14]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .

[15]  Filipe Aires,et al.  Blind source separation in the presence of weak sources , 2000, Neural Networks.

[16]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[17]  Veronique Achard Trois problemes cles de l'analyse 3d de la structure thermo-dynamique de l'atmosphere par satellite : mesure du contenu en ozone; classification des masses d'air; modelisation hyper rapide du transfert radiatif , 1991 .

[18]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .