A Hölder continuous ODE related to traffic flow

This paper is devoted to the proof of the well posedness of a class of ordinary differential equations (ODEs). The vector field depends on the solution to a scalar conservation law. Forward uniqueness of Filippov solutions is obtained, as well as their Hölder continuous dependence on the initial data of the ODE. Furthermore, we prove the continuous dependence in C0 of the solution to the ODE from the initial data of the conservation law in L1. This problem is motivated by a model of traffic flow.