Measuring the Matter Density Using Baryon Oscillations in the SDSS

We measure the cosmological matter density by observing the positions of baryon acoustic oscillations in the clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We jointly analyze the main galaxies and LRGs in the SDSS DR5 sample, using over half a million galaxies in total. The oscillations are detected with 99.74% confidence (3.0 σ assuming Gaussianity) compared to a smooth power spectrum. When combined with the observed scale of the peaks within the CMB, we find a best-fit value of ΩM = 0.256 (68% confidence interval) for a flat Λ cosmology when marginalizing over the Hubble parameter and the baryon density. This value of the matter density is derived from the locations of the baryon oscillations in the galaxy power spectrum and in the CMB, and does not include any information from the overall shape of the power spectra. This is an extremely clean cosmological measurement, as the physics of the baryon acoustic oscillation production is well understood, and the positions of the oscillations are expected to be independent of systematics such as galaxy bias.

[1]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[2]  B. Yanny,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006 .

[3]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[4]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[5]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[6]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[7]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[8]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[9]  W. Percival,et al.  Fourier analysis of luminosity-dependent galaxy clustering , 2003, astro-ph/0306511.

[10]  Anisotropies in the cosmic microwave background : an analytic approach , 1994, astro-ph/9407093.

[11]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[12]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[13]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[14]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[15]  Baryonic Acoustic Oscillations in Simulated Galaxy Redshift Surveys , 2005, astro-ph/0507338.

[16]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[17]  G. Huetsi Acoustic oscillations in the SDSS DR4 luminous red galaxy sample power spectrum , 2005, astro-ph/0507678.

[18]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[19]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[20]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[21]  E. Bertschinger,et al.  Position-space description of the cosmic microwave background and its temperature correlation function. , 2000, Physical review letters.

[22]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks , 2003, astro-ph/0302220.

[23]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[24]  Napp,et al.  SDSS data management and photometric quality assessment , 2008 .

[25]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[26]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[27]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[28]  Dynamics of cosmological perturbations in position space , 2002, astro-ph/0202215.

[29]  Christopher J. Miller,et al.  Possible Detection of Baryonic Fluctuations in the Large-Scale Structure Power Spectrum , 2001, astro-ph/0103018.

[30]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[31]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[32]  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[33]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[34]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[35]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[36]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[37]  Baryon oscillations , 2005, astro-ph/0507307.

[38]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .