Selection of Key Factors and Parameters in Assessment Algorithms

Performance assessment algorithms contain many options and parameters that must be specified by the user. These factors substantially affect the accuracy and acceptability of the results of assessment exercises. A fundamental basis for performance assessment is to record and carefully inspect suitable closed-loop data. Pre-processing operations, which are suggested and those which should be strictly avoided, are given in this chapter. The first decision in control performance assessment is the choice of a (time-series) model structure for describing the net dynamic response associated with the control error. There are different possible structures and different possible identification techniques. The most widely used of them are briefly described. Particularly for MV and GMV benchmarking, it is decisive to properly select or estimate the parameters’ time delay and model orders. This topic is discussed, and some of the basic models and identification techniques concerning assessment accuracy and computational load are compared, to provide suggestions of the best suited approaches to be applied in practice.

[1]  U. Kruger,et al.  Dynamic Principal Component Analysis Using Subspace Model Identification , 2005, ICIC.

[2]  George E. P. Box,et al.  Parameter Estimation with Closed-Loop Operating data , 1975 .

[3]  Rolf Isermann,et al.  Required accuracy of mathematical models of linear time invariant controlled elements , 1971 .

[4]  Mats Isaksson A Comparison of Some Approaches to Time-Delay Estimation , 1997 .

[5]  Rudolf Kulhavý,et al.  System modelling and identification : By Rolf Johansson. Prentice-Hall, Englewood Cliffs, NJ (1993). ISBN 0-13-482308-7 , 1997, Autom..

[6]  Laurie Davies,et al.  The identification of multiple outliers , 1993 .

[7]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[8]  Biao Huang,et al.  Dynamic Modeling, Predictive Control and Performance Monitoring: A Data-driven Subspace Approach , 2008 .

[9]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[10]  Biao Huang,et al.  Minimum Variance Control and Performance Assessment of Time-Variant Processes , 2000 .

[11]  Guy A. Dumont,et al.  Control system performance monitoring: New developments and practical issues , 2002 .

[12]  Derrick J. Kozub CONTROLLER PERFORMANCE MONITORING AND DIAGNOSIS. INDUSTRIAL PERSPECTIVE , 2002 .

[13]  Paul M. J. Van den Hof,et al.  Identification and control - Closed-loop issues , 1995, Autom..

[14]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[15]  Nina F. Thornhill,et al.  Refinery-wide control loop performance assessment , 1999 .

[16]  Dale E. Seborg,et al.  Controller performance assessment based on setpoint response data , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[17]  S. Ding,et al.  Closed-loop subspace identification: an orthogonal projection approach , 2004 .

[18]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[19]  Nina F. Thornhill,et al.  Practical solutions to multivariate feedback control performance assessment problem: reduced a priori knowledge of interactor matrices , 2005 .

[20]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[21]  S. Gunnarsson,et al.  Some asymptotic results in recursive identification using laguerre models , 1991 .

[22]  Håkan Hjalmarsson,et al.  For model-based control design, closed-loop identification gives better performance , 1996, Autom..

[23]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[24]  G. Dumont,et al.  Deterministic adaptive control based on Laguerre series representation , 1988 .

[25]  Xiangdong He,et al.  A New Method for Identifying Orders of Input-Output Models for Nonlinear Dynamic Systems , 1993, 1993 American Control Conference.

[26]  Wei Jiang,et al.  On-line outlier detection and data cleaning , 2004, Comput. Chem. Eng..

[27]  Alexander Horch Condition Monitoring of Control Loops , 2000 .

[28]  Aidan O'Dwyer The estimation and compensation of processes with time delays , 1996 .

[29]  Nina F. Thornhill,et al.  The impact of compression on data-driven process analyses , 2004 .

[30]  T. Harris,et al.  Performance assessment measures for univariate feedback control , 1992 .

[31]  John F. MacGregor,et al.  Closed-loop identification: the role of the noise model and prefilters , 1995 .

[32]  L. Ljung,et al.  Identifiability conditions for linear systems operating in closed loop , 1975 .

[33]  Biao Huang,et al.  Estimation of the Dynamic Matrix and Noise Model for Model Predictive Control Using Closed-Loop Data , 2002 .

[34]  Gade Pandu Rangaiah,et al.  Attainment of PI Achievable Performance for Linear SISO Processes with Deadtime by Iterative Tuning , 2008 .

[35]  Nina F. Thornhill,et al.  Alternative solutions to multi-variate control performance assessment problems q , 2006 .

[36]  Bo Wahlberg,et al.  Parametric Signal Modelling using Laguerre Filters , 1993 .

[37]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[38]  Jozsef Bokor,et al.  System identification with generalized orthonormal basis functions , 1995, Autom..

[39]  T. Edgar,et al.  Assessment of achievable PI control performance for linear processes with dead time , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[40]  Biao Huang,et al.  Controller performance analysis with LQG benchmark obtained under closed loop conditions. , 2002, ISA transactions.

[41]  G.A. Dumont,et al.  Control loop performance monitoring , 1996, IEEE Trans. Control. Syst. Technol..

[42]  Ronald K. Pearson,et al.  Outliers in process modeling and identification , 2002, IEEE Trans. Control. Syst. Technol..

[43]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[44]  Lennart Ljung,et al.  Subspace Identification Methods Using Parsimonious Model Formulation , 2002 .

[45]  Biao Huang,et al.  Performance Assessment of Control Loops , 1999 .

[46]  Guy A. Dumont,et al.  Delay Estimation Using Variable Regression , 1991 .

[47]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[48]  C. T. Seppala,et al.  Time series methods for dynamic analysis of multiple controlled variables , 2002 .

[49]  B. Wahlberg System identification using Laguerre models , 1991 .

[50]  George E. P. Box,et al.  Topics in Control. 4. The Analysis of Closed-Loop Dynamic-Stochastic Systems. , 1972 .

[51]  William R. Cluett,et al.  Performance assessment using a model predictive control benchmark , 2004 .

[52]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[53]  C. Georgakis,et al.  Evaluation of controller performance—use of models derived by subspace identification , 2003 .

[54]  Svante Björklund,et al.  A Survey and Comparison of Time-Delay Estimation Methods in Linear Systems , 2003 .

[55]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.