On best rank-2 and rank-(2,2,2) approximations of order-3 tensors

It is well known that a best rank-R approximation of order-3 tensors may not exist for . A best rank-(R, R, R) approximation always exists, however, and is also a best rank-R approximation when it has rank (at most) R. For and real order-3 tensors it is shown that a best rank-2 approximation is also a local minimum of the best rank-(2,2,2) approximation problem. This implies that if all rank-(2,2,2) minima have rank larger than 2, then a best rank-2 approximation does not exist. This provides an easy-to-check criterion for existence of a best rank-2 approximation. The result is illustrated by means of simulations.

[1]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[2]  L. De Lathauwer,et al.  Algebraic methods after prewhitening , 2010 .

[3]  Alwin Stegeman,et al.  Finding the limit of diverging components in three-way Candecomp/Parafac - A demonstration of its practical merits , 2014, Comput. Stat. Data Anal..

[4]  P. Paatero Construction and analysis of degenerate PARAFAC models , 2000 .

[5]  Alwin Stegeman,et al.  Low-Rank Approximation of Generic p˟q˟2 Arrays and Diverging Components in the Candecomp/Parafac Model , 2008, SIAM J. Matrix Anal. Appl..

[6]  Grazia Lotti,et al.  Approximate Solutions for the Bilinear Form Computational Problem , 1980, SIAM J. Comput..

[7]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[8]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[9]  A. Stegeman,et al.  On the Non-Existence of Optimal Solutions and the Occurrence of “Degeneracy” in the CANDECOMP/PARAFAC Model , 2008, Psychometrika.

[10]  Alwin Stegeman,et al.  A Three-Way Jordan Canonical Form as Limit of Low-Rank Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..

[11]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[12]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[13]  Pierre Comon,et al.  Multiarray Signal Processing: Tensor decomposition meets compressed sensing , 2010, ArXiv.

[14]  Berkant Savas,et al.  Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..

[15]  A. Stegeman A G ] 1 5 N ov 2 01 0 The Generalized Schur Decomposition and the rank-R set of real I × J × 2 arrays , 2010 .

[16]  Shmuel Friedland,et al.  Low-Rank Approximation of Tensors , 2014, 1410.6089.

[17]  D. Kressner,et al.  Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory , 2015 .

[18]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[19]  Three-mode factor analysis with binary core and orthonormality constraints , 1992 .

[21]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[22]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[23]  J. Landsberg,et al.  On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.

[24]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[25]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[26]  Alwin Stegeman,et al.  Candecomp/Parafac: From Diverging Components to a Decomposition in Block Terms , 2012, SIAM J. Matrix Anal. Appl..

[27]  Sabine Van Huffel,et al.  Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..

[28]  A. Stegeman Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .

[29]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[30]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[31]  Berkant Savas,et al.  Perturbation Theory and Optimality Conditions for the Best Multilinear Rank Approximation of a Tensor , 2011, SIAM J. Matrix Anal. Appl..

[32]  Shmuel Friedland,et al.  Some approximation problems in semi-algebraic geometry , 2014, 1412.3178.

[33]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[34]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[35]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[36]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[37]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[38]  Claudiu Raicu Secant varieties of Segre–Veronese varieties , 2010, 1011.5867.

[39]  Lieven De Lathauwer,et al.  A Method to Avoid Diverging Components in the Candecomp/Parafac Model for Generic I˟J˟2 Arrays , 2008, SIAM J. Matrix Anal. Appl..

[40]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[41]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[42]  A. Stegeman On the (non)existence of best low-rank approximations of generic IxJx2 arrays , 2013, 1309.5727.

[43]  J. Kruskal,et al.  How 3-MFA data can cause degenerate parafac solutions, among other relationships , 1989 .

[44]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[45]  A. Stegeman Degeneracy in Candecomp/Parafac and Indscal Explained For Several Three-Sliced Arrays With A Two-Valued Typical Rank , 2007, Psychometrika.

[46]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[47]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[48]  Shmuel Friedland,et al.  On the generic and typical ranks of 3-tensors , 2008, 0805.3777.

[49]  E. Ballico,et al.  Tensor ranks on tangent developable of Segre varieties , 2012, 1210.7976.

[50]  Raf Vandebril,et al.  On Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..

[51]  P. Comon,et al.  Algebraic identification of under-determined mixtures , 2010 .

[52]  Pieter M. Kroonenberg,et al.  The equivalence of Tucker3 and Parafac models with two components , 2011 .

[53]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[54]  Paolo Giordani,et al.  A weak degeneracy revealing decomposition for the CANDECOMP/PARAFAC model , 2010 .