On best rank-2 and rank-(2,2,2) approximations of order-3 tensors
暂无分享,去创建一个
[1] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[2] L. De Lathauwer,et al. Algebraic methods after prewhitening , 2010 .
[3] Alwin Stegeman,et al. Finding the limit of diverging components in three-way Candecomp/Parafac - A demonstration of its practical merits , 2014, Comput. Stat. Data Anal..
[4] P. Paatero. Construction and analysis of degenerate PARAFAC models , 2000 .
[5] Alwin Stegeman,et al. Low-Rank Approximation of Generic p˟q˟2 Arrays and Diverging Components in the Candecomp/Parafac Model , 2008, SIAM J. Matrix Anal. Appl..
[6] Grazia Lotti,et al. Approximate Solutions for the Bilinear Form Computational Problem , 1980, SIAM J. Comput..
[7] Bülent Yener,et al. Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.
[8] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[9] A. Stegeman,et al. On the Non-Existence of Optimal Solutions and the Occurrence of “Degeneracy” in the CANDECOMP/PARAFAC Model , 2008, Psychometrika.
[10] Alwin Stegeman,et al. A Three-Way Jordan Canonical Form as Limit of Low-Rank Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..
[11] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[12] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[13] Pierre Comon,et al. Multiarray Signal Processing: Tensor decomposition meets compressed sensing , 2010, ArXiv.
[14] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[15] A. Stegeman. A G ] 1 5 N ov 2 01 0 The Generalized Schur Decomposition and the rank-R set of real I × J × 2 arrays , 2010 .
[16] Shmuel Friedland,et al. Low-Rank Approximation of Tensors , 2014, 1410.6089.
[17] D. Kressner,et al. Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory , 2015 .
[18] Pierre Comon,et al. Nonnegative approximations of nonnegative tensors , 2009, ArXiv.
[19] Three-mode factor analysis with binary core and orthonormality constraints , 1992 .
[21] P. Comon,et al. Generic and typical ranks of multi-way arrays , 2009 .
[22] P. Kroonenberg. Applied Multiway Data Analysis , 2008 .
[23] J. Landsberg,et al. On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.
[24] Rasmus Bro,et al. Multi-way Analysis with Applications in the Chemical Sciences , 2004 .
[25] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[26] Alwin Stegeman,et al. Candecomp/Parafac: From Diverging Components to a Decomposition in Block Terms , 2012, SIAM J. Matrix Anal. Appl..
[27] Sabine Van Huffel,et al. Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..
[28] A. Stegeman. Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .
[29] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[30] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[31] Berkant Savas,et al. Perturbation Theory and Optimality Conditions for the Best Multilinear Rank Approximation of a Tensor , 2011, SIAM J. Matrix Anal. Appl..
[32] Shmuel Friedland,et al. Some approximation problems in semi-algebraic geometry , 2014, 1412.3178.
[33] Rekha R. Thomas,et al. The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.
[34] Joos Vandewalle,et al. Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..
[35] Pierre Comon,et al. Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .
[36] J. Leeuw,et al. Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .
[37] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[38] Claudiu Raicu. Secant varieties of Segre–Veronese varieties , 2010, 1011.5867.
[39] Lieven De Lathauwer,et al. A Method to Avoid Diverging Components in the Candecomp/Parafac Model for Generic I˟J˟2 Arrays , 2008, SIAM J. Matrix Anal. Appl..
[40] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[41] Grazia Lotti,et al. O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..
[42] A. Stegeman. On the (non)existence of best low-rank approximations of generic IxJx2 arrays , 2013, 1309.5727.
[43] J. Kruskal,et al. How 3-MFA data can cause degenerate parafac solutions, among other relationships , 1989 .
[44] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[45] A. Stegeman. Degeneracy in Candecomp/Parafac and Indscal Explained For Several Three-Sliced Arrays With A Two-Valued Typical Rank , 2007, Psychometrika.
[46] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[47] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[48] Shmuel Friedland,et al. On the generic and typical ranks of 3-tensors , 2008, 0805.3777.
[49] E. Ballico,et al. Tensor ranks on tangent developable of Segre varieties , 2012, 1210.7976.
[50] Raf Vandebril,et al. On Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..
[51] P. Comon,et al. Algebraic identification of under-determined mixtures , 2010 .
[52] Pieter M. Kroonenberg,et al. The equivalence of Tucker3 and Parafac models with two components , 2011 .
[53] Rasmus Bro,et al. A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..
[54] Paolo Giordani,et al. A weak degeneracy revealing decomposition for the CANDECOMP/PARAFAC model , 2010 .