Bat algorithm for multi-objective optimisation

Engineering optimisation is typically multi-objective and multidisciplinary with complex constraints, and the solution of such complex problems requires efficient optimisation algorithms. Recently, Xin-She Yang proposed a bat-inspired algorithm for solving non-linear, global optimisation problems. In this paper, we extend this algorithm to solve multi-objective optimisation problems. The proposed multi-objective bat algorithm (MOBA) is first validated against a subset of test functions, and then applied to solve multi-objective design problems such as welded beam design. Simulation results suggest that the proposed algorithm works efficiently.

[1]  Simon Fong,et al.  Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications , 2011, NDT.

[2]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[3]  Katharine E. Hinman Bats: Biology and Behaviour.John D. Altringham , 1998 .

[4]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[5]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[6]  Pedro Isasi,et al.  Introduction to the Applications of Evolutionary Computation in Computer Security and Cryptography , 2004 .

[7]  Constantino Tsallis,et al.  Optimization by Simulated Annealing: Recent Progress , 1995 .

[8]  Xin-She Yang,et al.  Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization , 2010, NICSO.

[9]  Xin-She Yang,et al.  Computational Optimization and Applications in Engineering and Industry , 2013, Computational Optimization and Applications in Engineering and Industry.

[10]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[13]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[14]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[15]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[16]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[17]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[18]  Xiaohua Liu,et al.  Solving multi objective optimization problems using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[19]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[20]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[21]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[22]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[23]  Hussein A. Abbass,et al.  The Pareto Differential Evolution Algorithm , 2002, Int. J. Artif. Intell. Tools.

[24]  Zhihua Cui,et al.  Integral Particle Swarm Optimization with Dispersed Accelerator Information , 2009, Fundam. Informaticae.

[25]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[26]  B. V. Babu,et al.  Improved Strategies of Multi-objective Differential Evolution (MODE) for Multi-objective Optimization , 2009, IICAI.

[27]  Wenyin Gong,et al.  An efficient multiobjective differential evolution algorithm for engineering design , 2009 .

[28]  Matt Probert,et al.  Engineering Optimisation: An Introduction with Metaheuristic Applications, by Xin-She Yang , 2012 .

[29]  Gade Pandu Rangaiah,et al.  Multi-Objective Optimization: Techniques and Applications in Chemical Engineering(With CD-ROM) , 2008 .

[30]  Enrique Alba,et al.  Evolutionary Algorithms for Real-World Instances of the Automatic Frequency Planning Problem in GSM Networks , 2007, EvoCOP.

[31]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[32]  Ji Young Lee,et al.  Multi-objective optimisation using the Bees Algorithm , 2010 .

[33]  Xin-She Yang Introduction to Computational Mathematics , 2008 .

[34]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications , 2008, Natural Computing.

[35]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms: Second Edition , 2010 .

[36]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[37]  S. Utyuzhnikov,et al.  Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization , 2011 .

[38]  Xin-She Yang,et al.  Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms , 2005, IWINAC.

[39]  Xin-She Yang,et al.  Computational optimization, modelling and simulation-a paradigm shift , 2010, ICCS.

[40]  Xin-She Yang,et al.  Review of Metaheuristics and Generalized Evolutionary Walk Algorithm , 2011, 1105.3668.

[41]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[42]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[43]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[44]  Kalyanmoy Deb,et al.  Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design , 1999 .