On the Scrambled Sobol Sequence
暂无分享,去创建一个
Hongmei Chi | Michael Mascagni | Peter Beerli | Deidre W. Evans | M. Mascagni | P. Beerli | H. Chi | Deidre W. Evans | Peter Beerli
[1] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[2] Hongmei Chi,et al. Parallel linear congruential generators with Sophie-Germain moduli , 2004, Parallel Comput..
[3] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[4] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[5] Frances Y. Kuo,et al. Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.
[6] Donald E. Knuth,et al. The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .
[7] Eric Fournié,et al. Monte Carlo Methods in Finance , 2002 .
[8] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[9] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[10] Shu Tezuka,et al. Uniform Random Numbers , 1995 .
[11] I. Sobol. Uniformly distributed sequences with an additional uniform property , 1976 .
[12] Julian V. Noble,et al. The full Monte , 2002, Comput. Sci. Eng..
[13] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[14] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[15] Hongmei Chi,et al. On the optimal Halton sequence , 2005, Math. Comput. Simul..
[16] G. Marchuk,et al. Numerical methods and applications , 1995 .
[17] Harald Niederreiter,et al. Introduction to finite fields and their applications: List of Symbols , 1986 .
[18] Jian Cheng,et al. Computational Investigation of Low-Discrepancy Sequences in Simulation Algorithms for Bayesian Networks , 2000, UAI.
[19] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[20] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[21] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[22] Emanouil I. Atanassov. A New Efficient Algorithm for Generating the Scrambled Sobol' Sequence , 2002, Numerical Methods and Application.
[23] L. R. Moore,et al. An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .
[24] Peter Jaeckel,et al. Monte Carlo methods in finance , 2002 .
[25] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[26] Michael Mascagni. Parallel Linear Congruential Generators with Prime Moduli , 1998, Parallel Comput..
[27] Fred J. Hickernell,et al. Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.
[28] MatoušekJiří. On the L2-discrepancy for anchored boxes , 1998 .
[29] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .