An iterative region-growing process for cell image segmentation based on local color similarity and global shape criteria.
暂无分享,去创建一个
An image segmentation process was derived from an image model that assumed that cell images represent objects having characteristic relationships, limited shape properties and definite local color features. These assumptions allowed the design of a region-growing process in which the color features were used to iteratively aggregate image points in alternation with a test of the convexity of the aggregate obtained. The combination of both local and global criteria allowed the self-adaptation of the algorithm to segmentation difficulties and led to a self-assessment of the adequacy of the final segmentation result. The quality of the segmentation was evaluated by visual control of the match between cell images and the corresponding segmentation masks proposed by the algorithm. A comparison between this region-growing process and the conventional gray-level thresholding is illustrated. A field test involving 700 bone marrow cells, randomly selected from May-Grünwald-Giemsa-stained smears, allowed the evaluation of the efficiency, effectiveness and confidence of the algorithm: 96% of the cells were evaluated as correctly segmented by the algorithm's self-assessment of adequacy, with a 98% confidence. The principles of the other major segmentation algorithms are also reviewed.