Self-Assembled Monopole Antennas With Arbitrary Shapes and Tilt Angles for System-on-Chip and System-in-Package Applications

The design, fabrication and measurement of self-assembled vertical and oblique monopole antennas, are presented. Vertical on-chip antennas offer advantages over conventional on-chip planar antennas, most notably potentially higher efficiency with associated superior coupling between distant and adjacent ports along the direction of the chip plane. The fabrication method enables lithographical specification of the monopole profile and its sloping angle so that the orientation and shape of monopoles can be controlled. The fabrication process uses SU-8 material and is performed under 200°C and is therefore compatible with many commercial microelectronic fabrication processes such as complementary metal-oxide silicon (CMOS) technology. This allows the integration of the antennas with CMOS front ends and other signal processing stages for communications or sensing.

[1]  B. Heydari,et al.  Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[3]  B. Floyd,et al.  A silicon 60GHz receiver and transmitter chipset for broadband communications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[4]  L. Roy,et al.  Planar antennas in LTCC technology with transceiver integration capability for ultra-wideband applications , 2006, IEEE Transactions on Microwave Theory and Techniques.

[5]  Jose E. Schutt-Aine,et al.  Plastic deformation magnetic assembly (PDMA) of out-of-plane microstructures: Technology and application , 2001 .

[6]  J. B. Andersen,et al.  Circular array of outward sloping monopoles for vehicular diversity antennas , 1988 .

[7]  B. Gaucher,et al.  A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications , 2006, IEEE Journal of Solid-State Circuits.

[8]  R. Feng,et al.  Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings , 2002 .

[9]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[10]  Joy Laskar,et al.  Gigabit wireless: system-on-a-package technology , 2004, Proceedings of the IEEE.

[11]  Self and mutual impedances of monopoles on a circular disk , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[12]  C. Liu,et al.  Micromachined reconfigurable out-of-plane microstrip patch antenna using plastic deformation magnetic actuation , 2003, IEEE Microwave and Wireless Components Letters.

[13]  M. Tentzeris,et al.  Analysis and Characterization of a High-Performance Ka-Band Surface Micromachined Elevated Patch Antenna , 2006, IEEE Antennas and Wireless Propagation Letters.

[14]  P. Senn,et al.  Study of on-chip integrated antennas using standard silicon technology for short distance communications , 2005, 2005 European Microwave Conference.

[15]  Cheng-Ying Hsu,et al.  A 60-GHz Millimeter-Wave CPW-Fed Yagi Antenna Fabricated by Using 0.18- $\mu\hbox{m}$ CMOS Technology , 2008, IEEE Electron Device Letters.

[16]  L.P. Lee,et al.  Polymer MEMS-based microgripper for single cell manipulation , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[17]  R. Plana,et al.  Micromachined inverted F antenna for integration on low resistivity silicon substrates , 2005, IEEE Microwave and Wireless Components Letters.

[18]  R. Plana,et al.  Micromachined Loop Antennas on Low Resistivity Silicon Substrates , 2006, IEEE Transactions on Antennas and Propagation.

[19]  Lithographic stress control for the self-assembly of polymer MEMS structures , 2008 .

[20]  R. van Dijk,et al.  Millimeter-wave antenna measurement , 2007, 2007 European Microwave Conference.

[21]  M.M. Tentzeris,et al.  A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[22]  Cyril Luxey,et al.  Compact 3‐D on‐wafer radiation pattern measurement system for 60 GHz antennas , 2009 .

[23]  K. Sarabandi,et al.  Near-Earth Performance Analysis and Optimization of Low-Profile Antennas , 2007, 2007 IEEE Radio and Wireless Symposium.

[24]  J. Papapolymerou,et al.  A vertical W-band surface-micromachined Yagi-Uda antenna , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[25]  M. Allen,et al.  A W-band surface micromachined monopole for low-cost wireless communication systems , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[26]  A. Shamim,et al.  24 GHz On-Chip Antennas and Balun on Bulk Si for Air Transmission , 2008, IEEE Transactions on Antennas and Propagation.

[27]  M. Parameswaran,et al.  Control of the out-of-plane curvature in SU-8 compliant microstructures by exposure dose and baking times , 2007 .

[28]  M. Sun,et al.  On-chip antennas for 60-GHz radios in silicon technology , 2005, IEEE Transactions on Electron Devices.

[29]  A. Sugavanam,et al.  On-chip antennas in silicon ICs and their application , 2005, IEEE Transactions on Electron Devices.

[30]  Rodney G. Vaughan,et al.  Channels, Propagation and Antennas for Mobile Communications , 2003 .

[31]  Jeong-Geun Kim,et al.  60-GHz CPW-fed post-supported patch antenna using micromachining technology , 2005, IEEE Microwave and Wireless Components Letters.

[32]  Gabriel M. Rebeiz,et al.  A 94 GHz aperture-coupled micromachined microstrip antenna , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[33]  M. Parameswaran,et al.  Polymer MEMS processing for multi-user applications , 2007 .

[34]  Felix D. Mbairi,et al.  High frequency design and characterization of SU-8 based conductor backed coplanar waveguide transmission lines , 2005, Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005..

[35]  Chih-Ming Hung,et al.  Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters , 2002, IEEE J. Solid State Circuits.