The Abundance Spread in the Boötes I Dwarf Spheroidal Galaxy

We present medium-resolution spectra of 16 radial velocity red-giant members of the low-luminosity Bootes I dwarf spheroidal (dSph) galaxy that have sufficient S/N for abundance determination, based on the strength of the Ca II K line. Assuming [Ca/Fe] ~ 0.3, the abundance range in the sample is Δ[Fe/H] ~ 1.7 dex, with one star having [Fe/H] = –3.4. The dispersion is σ([Fe/H]) = 0.45 ± 0.08—similar to those of the Galaxy's more luminous dSph systems and ω Centauri. This suggests that the large mass (107 M☉) normally assumed to foster self-enrichment and the production of chemical abundance spreads was provided by the nonbaryonic material in Bootes I.

[1]  K. Freeman,et al.  The Giant Branch of omega Centauri. V. The Calcium Abundance Distribution , 1996 .

[2]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[3]  Galaxy redshifts: improved techniques , 1993, astro-ph/9305031.

[4]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[5]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[6]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[7]  Taft E. Armandroff,et al.  Metallicities for old stellar systems from Ca II triplet strengths in member giants , 1991 .

[8]  John E. Norris,et al.  Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method , 1999 .

[9]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[10]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[11]  A. Kaufer,et al.  A new view of the dwarf spheroidal satellites of the Milky Way from VLT flames: Where are the very metal-poor stars? , 2006 .

[12]  R.F.G. Wyse,et al.  The merging history of the Milky Way , 1996 .

[13]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[14]  Puragra Guhathakurta,et al.  Uncovering Extremely Metal-Poor Stars in the Milky Way’s Ultrafaint Dwarf Spheroidal Satellite Galaxies , 2008, 0807.1925.

[15]  R. C. Peterson,et al.  Radial velocities of remote globular clusters : stalking the missing mass. , 1985 .

[16]  E. S. Keeping,et al.  Introduction to statistical inference , 1958 .

[17]  V. Hill,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[18]  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[19]  Coryn A. L. Bailer-Jones,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[20]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[21]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[22]  T. Beers,et al.  A Search for Stars of Very Low Metal Abundance. III. UBV Photometry of Metal-weak Candidates , 1985 .

[23]  V. Ripepi,et al.  Variable Stars in the Newly Discovered Milky Way Satellite in Bootes , 2006, astro-ph/0611285.

[24]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.