Distance-2 Self-stabilizing Algorithm for a b-Coloring of Graphs

A b-coloring of a graph G is a proper k -coloring of Gsuch that for each color i , 1 ≤ i ≤k , at least one vertex colored with i is adjacentto every color j , with 1 ≤ j ≠ i ≤ k . This kind of coloring is useful to decompose anysystem into communities, where each community contains a vertexadjacent to all the other communities. This kind of organizationcan provide improving in many fields, especially in the dataclustering. In this paper we propose a new self-stabilizingalgorithm for finding a b-coloring of arbitrary undirectedconnected graphs. Because the characteristics of the b-coloringproblem, the proposed self-stabilizing algorithm use a distance-2knowledge.

[1]  Wayne Goddard,et al.  An anonymous self-stabilizing algorithm for 1-maximal independent set in trees , 2004, Inf. Process. Lett..

[2]  Pradip K. Srimani,et al.  Linear time self-stabilizing colorings , 2003, Inf. Process. Lett..

[3]  Mehmet Hakan Karaata,et al.  A self-stabilizing algorithm for coloring planar graphs , 2005, Distributed Computing.

[4]  Shing-Tsaan Huang,et al.  Self-stabilizing coloration in anonymous planar networks , 2005, Inf. Process. Lett..

[5]  Pradip K. Srimani,et al.  A self-stabilizing distributed algorithm for minimal spanning tree problem in a symmetric graph , 1998 .

[6]  A. Dussauchoy,et al.  A New Graph-Based Clustering Approach: Application to PMSI Data , 2006, 2006 International Conference on Service Systems and Service Management.

[7]  Zsolt Tuza,et al.  On the b-Chromatic Number of Graphs , 2002, WG.

[8]  Ajoy Kumar Datta,et al.  Self-Stabilizing Local Mutual Exclusion and Daemon Refinement , 2000, Chic. J. Theor. Comput. Sci..

[9]  Brice Effantin,et al.  The b-chromatic number of some power graphs , 2003 .

[10]  Mekkia Kouider,et al.  Some bounds for the b-chromatic number of a grap , 2002, Discret. Math..

[11]  Wayne Goddard,et al.  Distance- k knowledge in self-stabilizing algorithms , 2008, Theor. Comput. Sci..

[12]  Sébastien Tixeuil,et al.  Self-stabilizing Vertex Coloring of Arbitrary Graphs , 2000 .

[13]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[14]  Hui Gao,et al.  Parallel and Distributed Processing and Applications , 2005 .

[15]  Wayne Goddard,et al.  Distance-two information in self-stabilizing algorithms , 2004, Parallel Process. Lett..

[16]  Hamamache Kheddouci,et al.  A Distributed Algorithm for a b-Coloring of a Graph , 2006, ISPA.

[17]  Josva Kleist,et al.  Migration = cloning; aliasing , 1999 .

[18]  Hamamache Kheddouci,et al.  The b-chromatic number of power graphs , 2003, Discret. Math. Theor. Comput. Sci..

[19]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[20]  Shing-Tsaan Huang,et al.  A Self-Stabilizing Algorithm for Maximal Matching , 1992, Inf. Process. Lett..

[21]  Anish Arora,et al.  Stabilization-Preserving Atomicity Refinement , 1999, DISC.

[22]  Mario Valencia-Pabon,et al.  On Approximating the B-Chromatic Number , 2003, Discret. Appl. Math..

[23]  Pradip K. Srimani,et al.  Mutual Exclusion Between Neighboring Nodes in an Arbitrary System Graph Tree That Stabilizes Using Read/Write Atomicity , 1999, Euro-Par.

[24]  Pradip K. Srimani,et al.  A self-stabilizing algorithm for coloring bipartite graphs , 1993, Inf. Sci..