Probing the Stellar Populations and Star Formation History of Early-type Galaxies at 0 < z < 1.1 in the Rest-frame Ultraviolet

We measure the evolution of the rest-frame near-ultraviolet (NUV)−V colors for early-type galaxies in clusters at 0 < z < 1.1 using data from the Hyper Suprime-Cam Subaru Strategic Program, CFHT Large Area U-band Deep Survey, and local Sloan Digital Sky Survey clusters observed with Galaxy Evolution Explorer. Our results show that there is an excess in the ultraviolet spectrum in most quiescent galaxies (compared to the expectations from models fitting their optical/infrared colors and spectra) below z ∼ 0.6, beyond which the excess UV emission fades rapidly. This evolution of the UV color is only consistent with the presence of a highly evolved, hot horizontal branch subpopulation in these galaxies (among the majority of cool and optically bright stars), comprising on average 10% of the total stellar mass and forming at z > 3. The blue UV colors of early-type galaxies at low–intermediate redshifts are likely driven by this subpopulation being enriched in helium up to ∼44%. At z > 0.8 (when the extra UV component has not yet appeared) the data allow us to constrain the star formation histories of galaxies by fitting models to the evolution of their UV colors: we find that the epoch at which the stellar populations formed lies in the range 3 < z form < 10 (corresponding to 0.5–2.2 Gyr after the Big Bang) with a star formation e-folding timescale of τ = 0.35–0.7 Gyr, suggesting that these galaxies formed the majority of stars at very high redshift, with a brief yet intense burst of star formation activity. The star formation history and chemical evolution of early-type galaxies resemble those of globular clusters, albeit on much larger scales.

[1]  R. Abraham,et al.  An Extremely Compact, Low-mass Galaxy on its Way to Quiescence at z = 5.2 , 2023, The Astrophysical Journal Letters.

[2]  Copenhagen,et al.  Identification and properties of intense star-forming galaxies at redshifts z > 10 , 2022, Nature Astronomy.

[3]  A. Milone,et al.  The chemical compositions of multiple stellar populations in the globular cluster NGC 2808 , 2022, Monthly notices of the Royal Astronomical Society.

[4]  Cheng Li,et al.  Galaxy Populations in Groups and Clusters: Evidence for a Characteristic Stellar Mass Scale at M ∗ ∼ 109.5 M ⊙ , 2022, The Astrophysical Journal.

[5]  D. Hartmann,et al.  Modeling the Extragalactic Background Light and the Cosmic Star Formation History , 2022, The Astrophysical Journal.

[6]  J. Surace,et al.  MAGAZ3NE: High Stellar Velocity Dispersions for Ultramassive Quiescent Galaxies at z ≳ 3 , 2022, The Astrophysical Journal.

[7]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[8]  M. Bremer,et al.  The Ultraviolet Upturn in field Luminous Red Galaxies at $0.3 , 2022, 2203.02175.

[9]  M. Bremer,et al.  Evolution of the Ultraviolet Upturn at 0.3 < z < 1: Exploring Helium-rich Stellar Populations , 2021, The Astrophysical Journal.

[10]  R. Lupton,et al.  Third Data Release of the Hyper Suprime-Cam Subaru Strategic Program , 2021, 2108.13045.

[11]  C. Jacobs,et al.  Massive high-redshift quiescent galaxies with JWST , 2021, Publications of the Astronomical Society of Australia.

[12]  Benjamin D. Johnson,et al.  Fast, Slow, Early, Late: Quenching Massive Galaxies at z ∼ 0.8 , 2021, The Astrophysical Journal.

[13]  A. Dotter,et al.  Multiple Stellar Populations in Asymptotic Giant Branch Stars of Galactic Globular Clusters , 2021, 2101.09843.

[14]  A. Cimatti,et al.  HST grism spectroscopy of z ~ 3 massive quiescent galaxies. Approaching the metamorphosis , 2020, Astronomy & Astrophysics.

[15]  S. Borgani,et al.  Brightest cluster galaxies: the centre can(not?) hold , 2020, 2010.09617.

[16]  M. Nonino,et al.  The Massive Ancient Galaxies at z > 3 NEar-infrared (MAGAZ3NE) Survey: Confirmation of Extremely Rapid Star Formation and Quenching Timescales for Massive Galaxies in the Early Universe , 2020, The Astrophysical Journal.

[17]  A. Milone,et al.  Mass-loss along the red giant branch in 46 globular clusters and their multiple populations , 2020, 2009.01080.

[18]  Hilo,et al.  Galaxy And Mass Assembly (GAMA): Defining passive galaxy samples and searching for the UV upturn , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  A. Negri,et al.  Sub one per cent mass fractions of young stars in red massive galaxies , 2019, Nature Astronomy.

[20]  M. Nonino,et al.  An Extremely Massive Quiescent Galaxy at z = 3.493: Evidence of Insufficiently Rapid Quenching Mechanisms in Theoretical Models , 2019, The Astrophysical Journal.

[21]  O. Ilbert,et al.  Quiescent Galaxies 1.5 Billion Years after the Big Bang and Their Progenitors , 2019, The Astrophysical Journal.

[22]  O. Ilbert,et al.  The CFHT Large Area U-band Deep Survey (CLAUDS) , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  M. Bremer,et al.  Environmental effects on the UV upturn in local clusters of galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  E. L. Wright,et al.  The Massive and Distant Clusters of WISE Survey. I. Survey Overview and a Catalog of >2000 Galaxy Clusters at z ≃ 1 , 2018, The Astrophysical Journal Supplement Series.

[25]  Finland.,et al.  The rise and fall of the UV upturn: z = 0.3, 0.55, and 0.7 , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[27]  T. Yuan,et al.  Near infrared spectroscopy and star-formation histories of 3 ≤ z ≤ 4 quiescent galaxies , 2018, Astronomy & Astrophysics.

[28]  UK.,et al.  Evolution of the UV upturn in cluster galaxies: Abell 1689 , 2018, 1805.01472.

[29]  P. Goudfrooij Dissolved Massive Metal-rich Globular Clusters Can Cause the Range of UV Upturn Strengths Found among Early-type Galaxies , 2018, 1804.00668.

[30]  UK.,et al.  UV SEDs of early-type cluster galaxies: a new look at the UV upturn , 2018, 1801.09688.

[31]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[32]  Young-Wook Lee,et al.  Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations , 2017, 1704.07382.

[33]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[34]  T. Yuan,et al.  A massive, quiescent galaxy at a redshift of 3.717 , 2017, Nature.

[35]  Satoshi Miyazaki,et al.  An optically-selected cluster catalog at redshift 0.1 , 2017, 1701.00818.

[36]  J. Falc'on-Barroso,et al.  UV-extended E-MILES stellar population models: young components in massive early-type galaxies , 2016, 1612.01187.

[37]  J. Schombert COLORS OF ELLIPTICALS FROM GALEX TO SPITZER , 2016, 1609.07500.

[38]  M. Peacock,et al.  Globular clusters in the far-ultraviolet: evidence for He-enriched second populations in extragalactic globular clusters? , 2016, 1609.04819.

[39]  G. Gavazzi,et al.  Quenching of the star formation activity in cluster galaxies , 2016, 1609.00545.

[40]  M. Bremer,et al.  Morphological evolution of cluster red sequence galaxies in the past 9 Gyr , 2016, 1606.07192.

[41]  G. Brammer,et al.  A Spectroscopic Follow-up Program of Very Massive Galaxies at 3 < z < 4: Confirmation of Spectroscopic Redshifts, and a High Fraction of Powerful AGNs , 2016, 1606.05350.

[42]  M. Nonino,et al.  CLASH-VLT: Environment-driven evolution of galaxies in the z=0.209 cluster Abell 209 , 2015, 1510.05659.

[43]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[44]  A. Zijlstra,et al.  Mass-loss on the red giant branch: the value and metallicity dependence of Reimers’ η in globular clusters , 2015, 1501.00874.

[45]  Chile,et al.  THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. I. OVERVIEW OF THE PROJECT AND DETECTION OF MULTIPLE STELLAR POPULATIONS , 2014, 1410.4564.

[46]  E. Rykoff,et al.  redMaPPer – IV. Photometric membership identification of red cluster galaxies with 1 per cent precision , 2014, 1410.1193.

[47]  M. Scodeggio,et al.  CLASH-VLT: The stellar mass function and stellar mass density profile of the z=0.44 cluster of galaxies MACS J1206.2-0847 , 2014, 1408.6356.

[48]  G. Bruzual,et al.  Binary stars and the UVX in early type galaxies , 2014, 1408.3426.

[49]  M. Oguri A cluster finding algorithm based on the multiband identification of red sequence galaxies , 2014, 1407.4693.

[50]  S. Cassisi,et al.  The M 4 Core Project with HST - II. Multiple stellar populations at the bottom of the main sequence , 2014, 1401.1091.

[51]  Astronomy,et al.  Terzan 8: a Sagittarius-flavoured globular cluster , 2013, 1311.2589.

[52]  M. Catelán,et al.  Helium enhanced stars and multiple populations along the horizontal branch of NGC 2808: direct spectroscopic measurements , 2013, 1310.4527.

[53]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[54]  E. Dalessandro,et al.  The horizontal branch in the UV colour–magnitude diagrams – II. The case of M3, M13 and M79 , 2012, 1212.4419.

[55]  Young-Wook Lee,et al.  YONSEI EVOLUTIONARY POPULATION SYNTHESIS (YEPS) MODEL. I. SPECTROSCOPIC EVOLUTION OF SIMPLE STELLAR POPULATIONS , 2012, 1210.6032.

[56]  M. Bureau,et al.  The SAURON project – XXI. The spatially resolved UV–line strength relations of early-type galaxies , 2012, 1204.2590.

[57]  M. Pinsonneault,et al.  Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819 , 2011, 1109.4376.

[58]  D. Carter,et al.  The spatial distribution and origin of the FUV excess in early-type galaxies , 2011, 1103.0743.

[59]  M. Chavez,et al.  Open issues on the synthesis of evolved stellar populations at ultraviolet wavelengths , 2011, 1102.0297.

[60]  S. Percival,et al.  Modelling realistic horizontal branch morphologies and their impact on spectroscopic ages of unresolved stellar systems , 2010, 1012.0004.

[61]  5. vicolodell'Osservatorio,et al.  The connection between missing AGB stars and extended horizontal branches , 2010, 1010.5913.

[62]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[63]  Italy.,et al.  AGB Connection and Ultraviolet Luminosity Excess in Elliptical Galaxies , 2008, 0806.2658.

[64]  Andrew M. Hopkins,et al.  Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts , 2008, 0804.4008.

[65]  Zhanwen Han,et al.  Stellar Age versus Mass of Early-Type Galaxies in the Virgo Cluster , 2008, 0803.2512.

[66]  C. Ree,et al.  On the Origin of Bimodal Horizontal Branches in Massive Globular Clusters: The Case of NGC 6388 and NGC 6441 , 2007, 0712.4023.

[67]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[68]  K. Schawinski,et al.  The UV colours of high-redshift early-type galaxies : Evidence for recent star formation and stellar mass assembly over the last 8 billion years , 2007, 0709.0806.

[69]  A. Szalay,et al.  The Calibration and Data Products of the Galaxy Evolution Explorer , 2007, 0706.0755.

[70]  K. Schawinski,et al.  A Binary Model for the UV-upturn of Elliptical Galaxies , 2006, Proceedings of the International Astronomical Union.

[71]  G. Meynet,et al.  Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters , 2006, astro-ph/0611379.

[72]  K. Schawinski,et al.  UV-Optical Colors as Probes of Early-Type Galaxy Evolution , 2006, astro-ph/0601029.

[73]  G. Gavazzi,et al.  UV Properties of Early-Type Galaxies in the Virgo Cluster , 2005, astro-ph/0507169.

[74]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[75]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[76]  T. Treu,et al.  Keck Spectroscopy of Distant GOODS Spheroidal Galaxies: Downsizing in a Hierarchical Universe , 2005, astro-ph/0502028.

[77]  C. Ree,et al.  Super-Helium-rich Populations and the Origin of Extreme Horizontal-Branch Stars in Globular Clusters , 2005, astro-ph/0501500.

[78]  D. Schiminovich,et al.  Galaxy Evolution Explorer Ultraviolet Color-Magnitude Relations and Evidence of Recent Star Formation in Early-Type Galaxies , 2004, astro-ph/0411327.

[79]  A. Cimatti,et al.  Old galaxies in the young Universe , 2004, Nature.

[80]  F. Matteucci,et al.  Photochemical evolution of elliptical galaxies – I. The high-redshift formation scenario , 2003, astro-ph/0310251.

[81]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[82]  Caltech,et al.  U-, B- and r-band luminosity functions of galaxies in the Coma cluster , 2001, astro-ph/0106354.

[83]  Paolo Ventura,et al.  Predictions for Self-Pollution in Globular Cluster Stars , 2001 .

[84]  R. Propris How galaxies disguise their ages , 2000, astro-ph/0005562.

[85]  Hyun-chul Lee,et al.  The Hβ Index as an Age Indicator of Old Stellar Systems: The Effects of Horizontal-Branch Stars , 2000, astro-ph/0004247.

[86]  R. Kimble,et al.  Far-Ultraviolet Emission from Elliptical Galaxies at z = 0.55 , 1999, Astrophysical Journal.

[87]  R. O’Connell Far-Ultraviolet Radiation from Elliptical Galaxies , 1999, astro-ph/9906068.

[88]  J. Woo,et al.  The Ultraviolet Upturn in Elliptical Galaxies as an Age Indicator , 1998, astro-ph/9810022.

[89]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[90]  P. Demarque,et al.  On the Origin of the UV Upturn in Elliptical Galaxies. I. Sensitivity of UV Population Synthesis to Various Input Parameters , 1997, astro-ph/9705173.

[91]  Jang-Hyun Park,et al.  Evidence for a Sizable Age Spread among Galaxies from the Ultraviolet-Upturn Phenomenon in Early-type Systems , 1997 .

[92]  H. Ferguson,et al.  A Far-Ultraviolet Analysis of the Stellar Populations in Six Elliptical and S0 Galaxies , 1996, astro-ph/9701235.

[93]  G. Worthey Comprehensive stellar population models and the disentanglement of age and metallicity effects , 1994 .

[94]  R. Rood,et al.  Ultraviolet radiation from evolved stellar populations. 2: The ultraviolet upturn phenomenon in elliptical galaxies , 1994, astro-ph/9405030.

[95]  R. Rood,et al.  Ultraviolet Radiation from Evolved Stellar Populations. I. Models , 1993, astro-ph/9311022.

[96]  H. Ferguson,et al.  Constraints on the origin of the ultraviolet upturn in elliptical galaxies from Hopkins Ultraviolet Telescope observations of NGC 1399 , 1991 .

[97]  A. Code,et al.  Ultraviolet photometry from the Orbiting Astronomical Observatory. XXVI. Energy distributions of seven early-type galaxies and the central bulge of M31. , 1979 .

[98]  The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 02/09/03 THE EPOCHS OF EARLY-TYPE GALAXY FORMATION AS A FUNCTION OF ENVIRONMENT , 2004 .

[99]  A. Oemler,et al.  Evolution of galaxies in clusters. I. ISIT photometry of Cl 0024 + 1654 and 3C 295 , 1978 .