Optical Properties of Multi-component Oxide Glasses and Glass Fibers

We experimentally studied the optical properties of multicomponent oxide glasses that contain metallic components, such as potassium and sodium, and their glass fibers. The Rayleigh scattering coefficients of glasses such as Na2O-B2O3-SiO2 (NBS), K2O-MgO-SiO2 (KMS), K2O-Na2O-MgO-SiO2 (KNMS) are smaller than that of pure quartz glass. In particular, the Rayleigh scattering coefficient of KNMS glass was significantly lower at 38% of the value for pure quartz glass. This is believed to be the result of suppressing the composition fluctuations of KNMS glass by the mixed alkali effect. Furthermore, we studied the absorption properties of OH group impurities included in multicomponent oxide glasses. In particular, we fabricated NAS glass fibers that substituted the OH group impurity with an OD group (deuterium) by the double crucible method and verified a loss reduction of about 800 dB/km at the 1.55-µm wavelength. Through these studies, we clearly showed that the absorption losses of the OH group that hydrogen bonds to nonbridging oxygen clearly affected the increase in the 1.55-µm band loss in multicomponent oxide glass fibers. © 2003 Wiley Periodicals, Inc. Electron Comm Jpn Pt 1, 86(12): 21–35, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecja.10128

[1]  Anna Maria Giovanna Musinu,et al.  Coordination of Zinc(II) in ZnO–K2O–SiO2 Glasses by X‐ray Diffraction , 1988 .

[2]  Kenzo Susa,et al.  Preparation of D2O-treated sol-gel silica preform and OD absorption bands at IR and near-IR region , 1992 .

[3]  J. O. Isard The mixed alkali effect in glass , 1969 .

[4]  Masaharu Ohashi,et al.  Rayleigh Scattering in K2O–MgO–SiO2 and Na2O–B2O3–SiO2 Glasses , 2000 .

[5]  Masaharu Ohashi,et al.  Mixed‐Alkali Effect on Rayleigh Scattering in K2O–Na2O–MgO–SiO2 Glasses , 2004 .

[6]  Masaharu Ohashi,et al.  Low Rayleigh scattering P/sub 2/O/sub 5/-F-SiO/sub 2/ glasses , 1992 .

[7]  Katsusuke Tajima,et al.  Viscosity-matched P2O5-SiO2 core single-mode fiber , 1997 .

[8]  Masaharu Ohashi,et al.  Effect of thermal treatment on Rayleigh scattering in silica-based glasses , 1995 .

[9]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[10]  K. Tajima,et al.  Design of viscosity-matched optical fibers , 1992, IEEE Photonics Technology Letters.

[11]  N. Shibata,et al.  Optical attenuation in pure and doped fused silica in the ir wavelength region , 1977 .

[12]  Hideo Hosono,et al.  Electrical Conduction in Magnesium Phosphate Glasses Containing Heavy Water , 1989 .

[13]  M. E. Lines,et al.  Can the minimum attenuation of fused silica be significantly reduced by small compositional variations? I. Alkali metal dopants , 1994 .

[14]  Shin-ichi Todoroki,et al.  Alkali Magnesium/Zinc Silicate Glasses with Low Rayleigh Scattering , 1995 .

[15]  Masaharu Ohashi,et al.  Optical properties of sodium alminosilicate glass , 1992 .

[16]  M. Ohashi,et al.  Reduction of OH absorption loss by deuteration in Na/sub 2/O-Al/sub 2/O/sub 3/-SiO/sub 2/ glass fibre , 1998 .

[17]  Seung-Heun Lee,et al.  Viscosity Behavior and Mixed Alkali Effect of Alkali Aluminosilicate Glass Melts , 1997 .

[18]  Seiko Mitachi,et al.  Prediction of loss minima in infra-red optical fibres , 1981 .

[19]  F. W. Ostermayer,et al.  Investigation of the soda aluminosilicate glass system for application to fiber optical waveguides , 1975 .

[20]  Shin-ichi Todoroki,et al.  Sodium Magnesium Silicate Oxyfluoride Glass with Low Rayleigh Scattering , 1996 .

[21]  Delbert E. Day,et al.  Relation of Alkali Mobility and Mechanical Relaxation in Mixed‐Alkali Silicate Glasses , 1972 .

[22]  Yasuo Asano,et al.  Transmission characteristics and reliability of pure-silica-core single-mode fibers , 1986 .

[23]  K. Tajima Low-loss optical fibers realized by reduction of Rayleigh scattering loss , 1998 .

[24]  Shin-ichi Todoroki,et al.  Optical Properties of Na2O–MgO–SiO2Optical Fiber , 1998 .

[25]  Wolfgang Haller,et al.  Metastable Immiscibility Surface in the System Na2O‐B2O3‐SiO2* , 1970 .

[26]  Tadashi Ito,et al.  A new method of developing ultralow-loss glasses , 1997 .

[27]  M. E. Lines,et al.  Scattering losses in optic fiber materials. I. A new parametrization , 1984 .

[28]  Terutoshi Kanamori,et al.  Preparation of Elevated NA Fluoride Optical Fibers , 1986 .

[29]  Shin-ichi Todoroki,et al.  Evaluation of critical cooling rate for 30Na2O.10MgO.60SiO2 glass based on viscosity , 1996 .

[30]  Shin-ichi Todoroki,et al.  Sodium magnesium silicate glasses for ultra low loss fibers , 1996, Proceedings of European Conference on Optical Communication.

[31]  F. W. Ostermayer,et al.  Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials , 1973 .

[32]  Himanshu Jain,et al.  Tracer diffusion and electrical conductivity in sodium-cesium silicate glasses , 1983 .

[33]  A. J. Bruce,et al.  Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm , 1989 .

[34]  K. Tajima,et al.  Imperfection loss reduction in viscosity-matched optical fibers , 1993, IEEE Photonics Technology Letters.

[35]  K. Tajima,et al.  Rayleigh scattering reduction method for silica-based optical fiber , 2000, Journal of Lightwave Technology.