Corrigendum: Fourier Spectral Approximation to a Dissipative System Modeling the Flow of Liquid Crystals

≥ λ||dM ||2 − λ2 (2π)(2 + e). ∗Received by the editors October 20, 2002; accepted for publication November 26, 2002; published electronically May 12, 2003. http://www.siam.org/journals/sinum/41-2/41653.html †Department of Mathematics, Penn State University, 307 McAllister Bldg., State College, PA 16802 (qdu@math.psu.edu). ‡Department of Mathematics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, People’s Republic of China, (byguo@guomai.sh.cn). §Department of Mathematics, Purdue University, West Lafayette, IN 47907 (shen@math. purdue.edu).

[1]  Zdzisław Kamont,et al.  Difference methods for non-linear partial differential equations of the first order , 1988 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  Hantaek Bae Navier-Stokes equations , 1992 .

[4]  Kohji Toda,et al.  Periodic Property of Domain in Nematic Liquid Crystal Induced by Elastic Wave , 2000 .

[5]  J. B. Davies,et al.  FINITE-ELEMENT MODELLING IN 2-D OF NEMATIC LIQUID CRYSTAL STRUCTURES , 1996 .

[6]  Th. Seitz,et al.  Numerical Simulations of Three Dimensional Liquid Crystal Cells , 1999 .

[7]  Jie Shen,et al.  Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..

[8]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[9]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[10]  M. Gregory Forest,et al.  Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows , 2000 .

[11]  F. Alouges A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .

[12]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[13]  Jie Shen,et al.  Corrigendum: Fourier Spectral Approximation to a Dissipative System Modeling the Flow of Liquid Crystals , 2001, SIAM J. Numer. Anal..

[14]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[15]  F. Lin Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena , 1989 .

[16]  J. Ericksen,et al.  Equilibrium Theory of Liquid Crystals , 1976 .

[17]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[18]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[19]  V. Mocella,et al.  Numerical investigation of surface distortion and order parameter variation in nematics , 1999 .

[20]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[21]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[22]  Carl V. Brown,et al.  Numerical analysis of nematic liquid crystal alignment on asymmetric surface grating structures , 2000 .

[23]  Meyer,et al.  Fluid-flow-induced pattern formation in liquid crystals in a rotating magnetic field. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  R. Temam Navier-Stokes Equations , 1977 .

[25]  Colin Denniston,et al.  Simulations of liquid crystal hydrodynamics , 1999 .

[26]  F. M. Leslie Theory of Flow Phenomena in Liquid Crystals , 1979 .

[27]  Shigeomi Chono,et al.  Spatial development of director orientation of tumbling nematic liquid crystals in pressure-driven channel flow , 1998 .

[28]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .