Bounds on the degree of APN polynomials: the case of x−1 + g(x)

In this paper we consider APN functions $${f:\mathcal{F}_{2^m}\to \mathcal{F}_{2^m}}$$ of the form f(x) = x−1 + g(x) where g is any non $${\mathcal{F}_{2}}$$-affine polynomial. We prove a lower bound on the degree of the polynomial g. This bound in particular implies that such a function f is APN on at most a finite number of fields $${\mathcal{F}_{2^m}}$$. Furthermore we prove that when the degree of g is less than 7 such functions are APN only if m ≤ 3 where these functions are equivalent to x3.

[1]  Claude Carlet,et al.  Two Classes of Quadratic APN Binomials Inequivalent to Power Functions , 2008, IEEE Transactions on Information Theory.

[2]  Eimear Byrne,et al.  New families of quadratic almost perfect nonlinear trinomials and multinomials , 2008, Finite Fields Their Appl..

[3]  François Rodier Borne sur le degré des polynômes presque parfaitement non-linéaires , 2006, ArXiv.

[4]  Alexander Pott,et al.  A new APN function which is not equivalent to a power mapping , 2005, IEEE Transactions on Information Theory.

[5]  José Felipe Voloch Symmetric Cryptography and Algebraic Curves , 2008 .

[6]  Eimear Byrne,et al.  A few more quadratic APN functions , 2008, Cryptography and Communications.

[7]  Claude Carlet,et al.  Constructing new APN functions from known ones , 2009, Finite Fields Their Appl..

[8]  Heeralal Janwa,et al.  Double-Error-Correcting Cyclic Codes and Absolutely Irreducible Polynomials over GF(2) , 1995 .

[9]  Claude Carlet,et al.  Classes of Quadratic APN Trinomials and Hexanomials and Related Structures , 2008, IEEE Transactions on Information Theory.

[10]  Sudhir R. Ghorpade,et al.  Singular Varieties over Finite Fields , 2002 .

[11]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[12]  Jean-Pierre Serre Lettre à M. Tsfasman , 2000 .

[13]  P. Deligne La conjecture de Weil. I , 1974 .

[14]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[15]  Gary McGuire,et al.  Proof of a Conjecture on the Sequence of Exceptional Numbers, Classifying Cyclic Codes and APN Functions , 2009, ArXiv.

[16]  David Jedlicka,et al.  APN monomials over GF(2n) for infinitely many n , 2007, Finite Fields Their Appl..

[17]  Sudhir R. Ghorpade,et al.  \'Etale cohomology, Lefschetz Theorems and Number of Points of Singular Varieties over Finite Fields , 2008, 0808.2169.