Bayesian linearized seismic inversion with locally varying spatial anisotropy

Abstract Inversion of seismic data is commonly used in the quantitative estimation of acoustic properties of reservoirs. Locally varying anisotropy (LVA) is incorporated in the Bayesian formulation of the inverse problem to impose spatial constraints in the lateral continuity of the acoustic properties. Unlike elastic anisotropy used to define the directional dependence of elastic properties, locally varying anisotropy in this context describes the heterogeneity of elastic properties using scale lengths associated to the directions of maximum and minimum temporal/spatial continuity. This approach favors a multiple trace-based inversion to provide geologically consistent estimates of the model parameters at the seismic scale especially in geological formations that display complex nonlinear features such as channels or folds. The proposed method uses covariances obtained through quantitative modeling of the spatial statistics of the elastic parameters. The computation of spatial correlation uses anisotropic distances between locations within the geological formation. A synthetic validation of the method using a least squares approach shows an improvement in the inference of acoustic impedances from seismic data when nonlinear geological features are present.

[1]  J. Boisvert Incorporating complex geological features into geostatistical property modeling , 2012 .

[2]  Carla Carvajal,et al.  Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir , 2009 .

[3]  Carlos Torres-Verdín,et al.  Trace-based and geostatistical inversion of 3-D seismic data for thin-sand delineation: an application in San Jorge Basin, Argentina , 1999 .

[4]  A. Buland,et al.  Bayesian linearized AVO inversion , 2003 .

[5]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[6]  Clayton V. Deutsch,et al.  Methodology for Integrating Analog Geologic Data in 3-D Variogram Modeling , 1999 .

[7]  Jo Eidsvik,et al.  Analysis of prior models for a blocky inversion of seismic AVA data , 2010 .

[8]  O. Dubrule,et al.  Geostatistical inversion - a sequential method of stochastic reservoir modelling constrained by seismic data , 1994 .

[9]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[10]  Michael S. Bahorich,et al.  3-D seismic discontinuity for faults and stratigraphic features; the coherence cube , 1995 .

[11]  D. Velis Stochastic sparse-spike deconvolution , 2008 .

[12]  Michel Chouteau,et al.  3D gravity inversion using a model of parameter covariance , 2003 .

[13]  M. Chouteau,et al.  3D stochastic inversion of gravity data using cokriging and cosimulation , 2010 .

[14]  Miguel Bosch,et al.  The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction , 2004 .

[15]  I. Jensås A blockyness Constraint for seismic AVA Inversion , 2008 .

[16]  Ronald R. Coifman,et al.  Local discontinuity measures for 3-D seismic data , 2002 .

[17]  Mrinal K. Sen,et al.  Stochastic inversion of prestack seismic data using fractal-based initial models , 2010 .

[18]  T. Mukerji,et al.  Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review , 2010 .

[19]  Mauricio D. Sacchi,et al.  High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution , 2011 .

[20]  Philippe Marie Doyen,et al.  Porosity from seismic data: A geostatistical approach , 1988 .

[21]  D. Oldenburg,et al.  Recovery of the acoustic impedance from reflection seismograms , 1983 .

[22]  Tadeusz J. Ulrych,et al.  A Bayes tour of inversion: A tutorial , 2001 .

[23]  R. Lynn Kirlin,et al.  3-D broad‐band estimates of reflector dip and amplitude , 2000 .

[24]  Thomas H. Jordan,et al.  Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .

[25]  Arild Buland,et al.  Rapid spatially coupled AVO inversion in the Fourier domain , 2003 .

[26]  A. Tarantola,et al.  Linear inverse Gaussian theory and geostatistics , 2006 .

[27]  Clayton V. Deutsch,et al.  Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances , 2011, Comput. Geosci..

[28]  J. Boisvert,et al.  Inference of 2D and 3D Locally Varying Anisotropy Fields , 2012 .

[29]  T. Hansen,et al.  Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information , 2012 .

[30]  K. Marfurt,et al.  Seismic attributes — A historical perspective , 2005 .

[31]  Estimation of Vadose Zone Hydraulic Properties From Geophysical Data Using a Bayesian Framework: Effects of a Correlated Prior On Posterior Uncertainties , 2010 .

[32]  Tapan Mukerji,et al.  Stochastic reservoir characterization using prestack seismic data , 2004 .

[33]  S. Chopra Integrating coherence cube imaging and seismic inversion , 2001 .