Velocity Decomposition-Enhanced Control for Point and Curved-Foot Planar Bipeds Experiencing Velocity Disturbances

[1]  David C. Post,et al.  Velocity disturbance rejection for planar bipeds walking with HZD-based control , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Koushil Sreenath,et al.  Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL , 2013, Int. J. Robotics Res..

[3]  Jessy W. Grizzle,et al.  Walking gait optimization for accommodation of unknown terrain height variations , 2015, 2015 American Control Conference (ACC).

[4]  Ian R. Manchester,et al.  Invariant funnels for underactuated dynamic walking robots: New phase variable and experimental validation , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Jessy W. Grizzle,et al.  Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds , 2004, Int. J. Robotics Res..

[6]  A. Isidori Nonlinear Control Systems , 1985 .

[7]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[8]  Koushil Sreenath,et al.  Dynamic Walking on Randomly-Varying Discrete Terrain with One-step Preview , 2017, Robotics: Science and Systems.

[9]  Bill Goodwine,et al.  A Stopping Algorithm for Mechanical Systems , 2008, WAFR.

[10]  Anne E. Martin,et al.  Predicting human walking gaits with a simple planar model. , 2014, Journal of biomechanics.

[11]  Jessy W. Grizzle,et al.  The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper , 2009, IEEE Transactions on Automatic Control.

[12]  Ian R. Manchester,et al.  Stability Analysis and Control Design for an Underactuated Walking Robot via Computation of a Transverse Linearization , 2008 .

[13]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[14]  James P. Schmiedeler,et al.  A framework for the control of stable aperiodic walking in underactuated planar bipeds , 2009, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[15]  Bill Goodwine,et al.  The effect of dynamic singularities on robotic control and design , 2010, 2010 IEEE International Conference on Robotics and Automation.

[16]  Bill Goodwine,et al.  Design and Experimental Validation of a Velocity Decomposition-Based Controller for Underactuated Planar Bipeds , 2018, IEEE Robotics and Automation Letters.

[17]  Chandana Paul,et al.  Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge , 2014, Int. J. Robotics Res..

[18]  Bill Goodwine,et al.  Quantifying Control Authority in Periodic Motions of Underactuated Mobile Robots , 2015 .

[19]  Amod Kumar,et al.  A brief review of dynamics and control of underactuated biped robots , 2017, Adv. Robotics.

[20]  Ian R. Manchester,et al.  Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems , 2008, Annu. Rev. Control..

[21]  Jessy W. Grizzle,et al.  Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry , 2014, IEEE Transactions on Robotics.

[22]  Jessy W. Grizzle,et al.  Preliminary walking experiments with underactuated 3D bipedal robot MARLO , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Christine Chevallereau,et al.  From stable walking to steering of a 3D bipedal robot with passive point feet , 2012, Robotica.

[24]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[25]  Bill Goodwine,et al.  A Study of the Relationship between a Mechanical Coupling Metric and Gait Characteristics for an Ankle-Actuated Biped Robot , 2018, 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV).

[26]  Tad McGeer,et al.  Passive walking with knees , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[27]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[28]  Christine Chevallereau,et al.  Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot , 2005, Int. J. Robotics Res..

[29]  Ian R. Manchester,et al.  Periodic motion planning and analytical computation of transverse linearizations for hybrid mechanical systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[30]  Bill Goodwine,et al.  Intrinsic vector-valued symmetric form for simple mechanical control systems in the nonzero velocity setting , 2008, 2008 IEEE International Conference on Robotics and Automation.

[31]  David C. Post,et al.  Design and experimental implementation of a hybrid zero dynamics-based controller for planar bipeds with curved feet , 2014, Int. J. Robotics Res..

[32]  James P. Schmiedeler,et al.  Design and control of a planar bipedal robot ERNIE with parallel knee compliance , 2008, Auton. Robots.

[33]  Jessy W. Grizzle,et al.  Supervised learning for stabilizing underactuated bipedal robot locomotion, with outdoor experiments on the wave field , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Bill Goodwine,et al.  Using a nonlinear mechanical control coupling metric for biped robot control and design , 2017, 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR).

[35]  J. Perram,et al.  Explicit formula for a general integral of motion for a class of mechanical systems subject to holonomic constraint , 2003 .

[36]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[37]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[38]  J. Hauser,et al.  Feedback linearization of transverse dynamics for periodic orbits , 1995 .