Theoretical prediction of a strongly correlated Dirac metal
暂无分享,去创建一个
Frank Lechermann | Ronny Thomale | R. Valentí | H. Jeschke | F. Lechermann | R. Thomale | I. Mazin | Roser Valentí | I I Mazin | Harald O Jeschke | Hunpyo Lee | Mario Fink | Mario Fink | Hunpyo Lee | M. Fink
[1] R. Colman,et al. Magnetic and Crystallographic Studies of Mg-Herbertsmithite, γ-Cu3Mg(OH)6Cl2-A New S = 1/2 Kagome Magnet and Candidate Spin Liquid , 2011 .
[2] R. Valentí,et al. First-principles determination of Heisenberg Hamiltonian parameters for the spin-(1)/(2) kagome antiferromagnet ZnCu 3 (OH) 6 Cl 2 , 2013, 1303.1310.
[3] P. Anderson. The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.
[4] P. Hirschfeld,et al. Gap symmetry and structure of Fe-based superconductors , 2011, 1106.3712.
[5] F. Becca,et al. Vanishing spin gap in a competing spin-liquid phase in the kagome Heisenberg antiferromagnet , 2013, 1311.5038.
[6] Antoine Georges,et al. Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight , 2007, 0704.1434.
[7] W. Hanke,et al. Functional renormalization group for multi-orbital Fermi surface instabilities , 2013, 1310.6191.
[8] J. Sethna,et al. Topology of the resonating valence-bond state: Solitons and high-Tc superconductivity. , 1987, Physical review. B, Condensed matter.
[9] P. Csavinszky. Thomas-Fermi dielectric screening in semiconductors , 1980 .
[10] A. I. Lichtenstein,et al. Continuous-time quantum Monte Carlo method for fermions , 2005 .
[11] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[12] Y. Nagaoka. Ferromagnetism in a Narrow, Almost Half-Filled s Band , 1966 .
[13] R. Thomale,et al. Unconventional fermi surface instabilities in the kagome Hubbard model. , 2012, Physical review letters.
[14] R. Nandkishore,et al. Superconductivity of disordered Dirac fermions , 2013, 1302.5113.
[15] Daniel G. Nocera,et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.
[16] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[17] Hafner,et al. Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.
[18] Patrick A. Lee,et al. An End to the Drought of Quantum Spin Liquids , 2009 .
[19] R. Moessner,et al. Semi-classical spin dynamics of the antiferromagnetic Heisenberg model on the kagome lattice , 2014, 1403.7903.
[20] K. Koepernik,et al. Tight-binding models for the iron-based superconductors , 2009, 0905.4844.
[21] Philip W. Anderson,et al. Resonating valence bonds: A new kind of insulator? , 1973 .
[22] Simeng Yan,et al. Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.
[23] Harris,et al. Possible Néel orderings of the Kagomé antiferromagnet. , 1992, Physical review. B, Condensed matter.
[24] I. I. Mazin,et al. Correlated metals and the LDA+U method , 2002, cond-mat/0206548.
[25] J. Zak,et al. Topologically unavoidable points and lines of crossings in the band structure of solids , 2002 .
[26] P. Mendels,et al. Quantum kagome antiferromagnet : ZnCu3(OH)6Cl2 , 2010, 1107.3038.
[27] R. Valentí,et al. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators , 2015, Scientific Reports.
[28] Helmut Eschrig,et al. FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .
[29] Kazuo Ueda,et al. Phenomenological theory of unconventional superconductivity , 1991 .
[30] Raik Suttner,et al. Renormalization group analysis of competing quantum phases in the J1-J2 Heisenberg model on the kagome lattice , 2013, 1303.0579.
[31] R. Thomale,et al. Sublattice interference in the kagome Hubbard model , 2012, 1206.6539.
[32] Li,et al. Spin-rotation-invariant slave-boson approach to the Hubbard model. , 1989, Physical review. B, Condensed matter.
[33] MULTIBAND GUTZWILLER WAVE FUNCTIONS FOR GENERAL ON-SITE INTERACTIONS , 1997, cond-mat/9712240.
[34] B. M. Fulk. MATH , 1992 .
[35] M. Salmhofer,et al. Functional renormalization group approach to correlated fermion systems , 2011, 1105.5289.
[36] Wan-Sheng Wang,et al. Competing electronic orders on kagome lattices at van Hove filling , 2012, 1208.4925.
[37] Wen,et al. Mean-field theory of spin-liquid states with finite energy gap and topological orders. , 1991, Physical review. B, Condensed matter.
[38] W. Hanke,et al. Competing many-body instabilities and unconventional superconductivity in graphene , 2011, 1109.2953.