Alteration of Membrane Physicochemical Properties by Two Factors for Membrane Protein Integration

[1]  K. Nishiyama,et al.  Increased expression of the bacterial glycolipid MPIase is required for efficient protein translocation across membranes in cold conditions , 2019, The Journal of Biological Chemistry.

[2]  K. Nishiyama,et al.  Syntheses and Activities of the Functional Structures of a Glycolipid Essential for Membrane Protein Integration. , 2018, ACS chemical biology.

[3]  K. Nishiyama,et al.  Cholesterol blocks spontaneous insertion of membrane proteins into liposomes of phosphatidylcholine , 2018, Journal of biochemistry.

[4]  S. Futaki,et al.  Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells. , 2017, Angewandte Chemie.

[5]  K. Nishiyama,et al.  Membrane insertion of F0 c subunit of F0F1 ATPase depends on glycolipozyme MPIase and is stimulated by YidC. , 2017, Biochemical and biophysical research communications.

[6]  M. DeLisa,et al.  A Molecularly Complete Planar Bacterial Outer Membrane Platform , 2016, Scientific Reports.

[7]  Fazle Hussain,et al.  Alteration of lipid membrane structure and dynamics by diacylglycerols with unsaturated chains. , 2016, Biochimica et biophysica acta.

[8]  Y. Mély,et al.  Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes , 2016, Scientific Reports.

[9]  J. Hamilton,et al.  Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms , 2016, Journal of Fluorescence.

[10]  Y. Sugita,et al.  Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State. , 2015, Cell reports.

[11]  M. Hong,et al.  Distinguishing bicontinuous lipid cubic phases from isotropic membrane morphologies using (31)P solid-state NMR spectroscopy. , 2015, The journal of physical chemistry. B.

[12]  Y. Okamoto,et al.  Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. , 2014, Angewandte Chemie.

[13]  Israel S. Fernández,et al.  Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution , 2014, Cell.

[14]  Toshihide Kobayashi,et al.  Sphingomyelin regulates the transbilayer movement of diacylglycerol in the plasma membrane of Madin‐Darby canine kidney cells , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[15]  D. Topgaard,et al.  Signal intensities in ¹H-¹³C CP and INEPT MAS NMR of liquid crystals. , 2013, Journal of magnetic resonance.

[16]  H. Umakoshi,et al.  Membrane fusion mediated by phospholipase C under endosomal pH conditions. , 2013, Colloids and surfaces. B, Biointerfaces.

[17]  Hiroki Okazaki,et al.  Comprehensive molecular motion capture for sphingomyelin by site-specific deuterium labeling. , 2012, Biochemistry.

[18]  Jian Dai,et al.  Modification of Lipid Bilayer Structure by Diacylglycerol: A Comparative Study of Diacylglycerol and Cholesterol. , 2012, Journal of chemical theory and computation.

[19]  T. Iwashita,et al.  MPIase is a glycolipozyme essential for membrane protein integration , 2012, Nature Communications.

[20]  P. Jurkiewicz,et al.  Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations. , 2012, Biochimie.

[21]  J. Dinić,et al.  Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing. , 2011, Biochimica et biophysica acta.

[22]  I. Vattulainen,et al.  Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol. , 2010, Biophysical journal.

[23]  S. Kusumoto,et al.  A novel complete reconstitution system for membrane integration of the simplest membrane protein. , 2010, Biochemical and biophysical research communications.

[24]  M. Nakano,et al.  Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering. , 2009, The journal of physical chemistry. B.

[25]  T. Rapoport,et al.  Structure of a complex of the ATPase SecA and the protein-translocation channel , 2008, Nature.

[26]  Y. Sugita,et al.  Conformational transition of Sec machinery inferred from bacterial SecYE structures , 2008, Nature.

[27]  Matthias Müller,et al.  Diacylglycerol Specifically Blocks Spontaneous Integration of Membrane Proteins and Allows Detection of a Factor-assisted Integration* , 2008, Journal of Biological Chemistry.

[28]  S. Kusumoto,et al.  Interaction of lipopolysaccharide and phospholipid in mixed membranes: solid-state 31P-NMR spectroscopic and microscopic investigations. , 2008, Biophysical journal.

[29]  S. Evans,et al.  Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes , 2008, Biointerphases.

[30]  S. Corbalán-García,et al.  Diacylglycerols, multivalent membrane modulators. , 2007, Chemistry and physics of lipids.

[31]  Matthias Müller,et al.  A Derivative of Lipid A Is Involved in Signal Recognition Particle/SecYEG-dependent and -independent Membrane Integrations* , 2006, Journal of Biological Chemistry.

[32]  Marco Gartmann,et al.  Signal Recognition Particle Receptor Exposes the Ribosomal Translocon Binding Site , 2006, Science.

[33]  Florence Tama,et al.  Structure of the E. coli protein-conducting channel bound to a translating ribosome , 2005, Nature.

[34]  G. von Heijne,et al.  Biogenesis of inner membrane proteins in Escherichia coli. , 2005, Annual review of microbiology.

[35]  T. Rapoport,et al.  Membrane-protein integration and the role of the translocation channel. , 2004, Trends in cell biology.

[36]  A. Kuhn,et al.  Escherichia coli YidC is a membrane insertase for Sec‐independent proteins , 2004, The EMBO journal.

[37]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[38]  G. Lindblom,et al.  The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. , 2003, Biophysical journal.

[39]  M. Longo,et al.  Obstructed diffusion in phase-separated supported lipid bilayers: a combined atomic force microscopy and fluorescence recovery after photobleaching approach. , 2002, Biophysical journal.

[40]  A. Kuhn,et al.  Direct Interaction of YidC with the Sec-independent Pf3 Coat Protein during Its Membrane Protein Insertion* , 2002, The Journal of Biological Chemistry.

[41]  F. Goñi,et al.  Diacylglycerol effects on phosphatidylinositol‐specific phospholipase C activity and vesicle fusion , 2001, FEBS letters.

[42]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[43]  S. Bezrukov Functional consequences of lipid packing stress , 2000 .

[44]  A. Kuhn,et al.  Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control , 1999, The EMBO journal.

[45]  A. Driessen,et al.  Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. , 1999, Biochemistry.

[46]  G. Feigenson,et al.  A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. , 1999, Biophysical journal.

[47]  R. Pagano,et al.  Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. , 1997, Biochemistry.

[48]  D. Marsh,et al.  Dynamic chain conformations in dimyristoyl glycerol-dimyristoyl phosphatidylcholine mixtures. 2H-NMR studies. , 1996, Biophysical journal.

[49]  F. Barrantes,et al.  Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. , 1996, Biophysical journal.

[50]  O. G. Mouritsen,et al.  The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anaesthetics and insecticides. , 1991, Biochimica et biophysica acta.

[51]  T. O'Leary,et al.  Effects of headgroup methylation and acyl chain length on the volume of melting of phosphatidylethanolamines. , 1990, Biophysical journal.

[52]  F. Goñi,et al.  Liposome fusion catalytically induced by phospholipase C. , 1989, Biochemistry.

[53]  H. Jarrell,et al.  Dynamics and orientation of glycolipid headgroups by 2H-NMR: gentiobiose. , 1989, Biochimica et biophysica acta.

[54]  H. Jarrell,et al.  Glycolipid membrane surface structure: orientation, conformation, and motion of a disaccharide headgroup. , 1989, Biochemistry.

[55]  A. Wand,et al.  The dependence of glyceroglycolipid orientation and dynamics on head-group structure. , 1987, Biochimica et biophysica acta.

[56]  B. Geller,et al.  M13 procoat inserts into liposomes in the absence of other membrane proteins. , 1985, The Journal of biological chemistry.

[57]  T. Diacovo,et al.  Physical properties and surface interactions of bilayer membranes containing N-methylated phosphatidylethanolamines. , 1985, Biochemistry.

[58]  W. Wickner,et al.  Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli. , 1985, The Journal of biological chemistry.

[59]  R. Bell,et al.  Transmembrane movement of phosphatidylglycerol and diacylglycerol sulfhydryl analogues. , 1984, Biochemistry.

[60]  M. Saxton,et al.  Lateral diffusion in an archipelago. Effects of impermeable patches on diffusion in a cell membrane. , 1982, Biophysical journal.

[61]  R. Michell,et al.  Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature , 1978, Nature.

[62]  J. Seelig Deuterium magnetic resonance: theory and application to lipid membranes , 1977, Quarterly Reviews of Biophysics.

[63]  R. Kornberg,et al.  Inside-outside transitions of phospholipids in vesicle membranes. , 1971, Biochemistry.