Radiographic information theory: correction for x-ray spectral distribution.

A more complete computational method is developed to account for the effect of the spectral distribution of the incident x-ray fluence on the minimum exposure required to record a specified information set in a diagnostic radiograph. It is shown that an earlier, less rigorous, but simpler computational technique does not introduce serious errors provided that both a good estimate of the mean energy per photon can be made and the detector does not contain an absorption edge in the spectral range. Also shown is that to a first approximation, it is immaterial whether the detecting surface counts the number of photons incident from each pixel or measures the energy incident on each pixel. A previous result is confirmed that, for mammography, the present methods of processing data from the detector utilize only a few percent of the incident information, suggesting that techniques can be developed for obtaining mammograms at substantially lower doses than those presently used. When used with film-screen combinations, x-ray tubes with tungsten anodes should require substantially lower exposures than devices using molybdenum anodes, when both are operated at their optimal voltage.