CAMK2γ Antagonizes mTORC1 Activation during Hepatocarcinogenesis

[1]  Jun Zhong,et al.  Common errors in mass spectrometry‐based analysis of post‐translational modifications , 2016, Proteomics.

[2]  E. Raymond,et al.  [Advanced hepatocellular carcinoma: importance of clinical trials]. , 2015, Revue medicale suisse.

[3]  Philippe Soriano,et al.  SRF regulates craniofacial development through selective recruitment of MRTF cofactors by PDGF signaling. , 2014, Developmental cell.

[4]  I. Steinfeld,et al.  Specific genomic and transcriptomic aberrations in tumors induced by partial hepatectomy of a chronically inflamed murine liver , 2014, Oncotarget.

[5]  M. Chance,et al.  Integrating phosphoproteomics in systems biology , 2014, Computational and structural biotechnology journal.

[6]  Ruedi Aebersold,et al.  The calcineurin signaling network evolves via conserved kinase‐phosphatase modules that transcend substrate identity (586.3) , 2014, Molecular cell.

[7]  S. Thorgeirsson,et al.  Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. , 2014, Journal of hepatology.

[8]  I. Pernicova,et al.  Metformin—mode of action and clinical implications for diabetes and cancer , 2014, Nature Reviews Endocrinology.

[9]  Ravi Iyengar,et al.  Interconnected Network Motifs Control Podocyte Morphology and Kidney Function , 2014, Science Signaling.

[10]  J. Hell,et al.  CaMKII: Claiming Center Stage in Postsynaptic Function and Organization , 2014, Neuron.

[11]  Andreas Krämer,et al.  Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..

[12]  E. Olson,et al.  Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. , 2013, Cell metabolism.

[13]  H. Kestler,et al.  A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing , 2013, Nature.

[14]  Jung-Hsien Chiang,et al.  PhosphoChain: a novel algorithm to predict kinase and phosphatase networks from high-throughput expression data , 2013, Bioinform..

[15]  G. Gores,et al.  The mTOR pathway in hepatic malignancies , 2013, Hepatology.

[16]  M. Yeh,et al.  Akt and mTORC1 have different roles during liver tumorigenesis in mice. , 2013, Gastroenterology.

[17]  H. M. Reis,et al.  Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma , 2013, Nature Reviews Cancer.

[18]  Z. Meng,et al.  CaMKII γ, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. , 2012, Blood.

[19]  Hua Yu,et al.  Deletion of IFNγ enhances hepatocarcinogenesis in FXR knockout mice. , 2012, Journal of hepatology.

[20]  A. Covey,et al.  Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma , 2012, CA: a cancer journal for clinicians.

[21]  J. Yates,et al.  Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. , 2012, Cell metabolism.

[22]  Zhi‐Jie Zheng,et al.  Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. , 2012, The Journal of clinical endocrinology and metabolism.

[23]  Y. Yen,et al.  Hepatocarcinogenesis in FXR-/- mice mimics human HCC progression that operates through HNF1α regulation of FXR expression. , 2012, Molecular endocrinology.

[24]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[25]  R. Bronson,et al.  Chronic Activation of mTOR Complex 1 Is Sufficient to Cause Hepatocellular Carcinoma in Mice , 2012, Science Signaling.

[26]  G. Feng Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. , 2012, Cancer cell.

[27]  Zhaoyu Li,et al.  Foxa1 and Foxa2 Are Essential for Sexual Dimorphism in Liver Cancer , 2012, Cell.

[28]  Philip Griebel,et al.  Peptide arrays for kinome analysis: New opportunities and remaining challenges , 2011, Proteomics.

[29]  Niels Voigt,et al.  Oxidized CaMKII causes cardiac sinus node dysfunction in mice. , 2011, The Journal of clinical investigation.

[30]  G. Mills,et al.  Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition , 2011, Oncogene.

[31]  D. Calvisi,et al.  Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. , 2011, Gastroenterology.

[32]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.

[33]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[34]  A. Zhu,et al.  The role of signaling pathways in the development and treatment of hepatocellular carcinoma , 2010, Oncogene.

[35]  S. Hirohashi,et al.  Combined Functional Genome Survey of Therapeutic Targets for Hepatocellular Carcinoma , 2010, Clinical Cancer Research.

[36]  C. Hellerbrand,et al.  Potent antifibrotic activity of mTOR inhibitors sirolimus and everolimus but not of cyclosporine A and tacrolimus in experimental liver fibrosis. , 2010, Journal of hepatology.

[37]  D. Fingar,et al.  mTOR Ser-2481 Autophosphorylation Monitors mTORC-specific Catalytic Activity and Clarifies Rapamycin Mechanism of Action* , 2009, The Journal of Biological Chemistry.

[38]  Mark E. Anderson,et al.  Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. , 2009, The Journal of clinical investigation.

[39]  E. Wagner,et al.  Signal integration by JNK and p38 MAPK pathways in cancer development , 2009, Nature Reviews Cancer.

[40]  M. Neurath,et al.  STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing , 2009, The Journal of experimental medicine.

[41]  J. Blenis,et al.  Molecular mechanisms of mTOR-mediated translational control , 2009, Nature Reviews Molecular Cell Biology.

[42]  M. Illario,et al.  Calcium-calmodulin-dependent kinase II (CaMKII) mediates insulin-stimulated proliferation and glucose uptake. , 2009, Cellular signalling.

[43]  Avi Ma'ayan,et al.  KEA: kinase enrichment analysis , 2009, Bioinform..

[44]  Philippe P Roux,et al.  Oncogenic MAPK Signaling Stimulates mTORC1 Activity by Promoting RSK-Mediated Raptor Phosphorylation , 2008, Current Biology.

[45]  Dieter Häussinger,et al.  Sorafenib in advanced hepatocellular carcinoma. , 2008, The New England journal of medicine.

[46]  S. Collins,et al.  Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation. , 2008, Cancer research.

[47]  Mark E. Anderson,et al.  A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation , 2008, Cell.

[48]  yang-xin fu,et al.  Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. , 2008, The Journal of clinical investigation.

[49]  Michael Karin,et al.  References and Notes Supporting Online Material Materials and Methods Som Text Figs. S1 to S6 Tables S1 to S4 Gender Disparity in Liver Cancer Due to Sex Differences in Myd88-dependent Il-6 Production , 2022 .

[50]  J. Ward,et al.  Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. , 2007, Carcinogenesis.

[51]  R. Schwabe,et al.  Gene expression profiles during hepatic stellate cell activation in culture and in vivo. , 2007, Gastroenterology.

[52]  Hilmar Bading,et al.  Decoding NMDA Receptor Signaling: Identification of Genomic Programs Specifying Neuronal Survival and Death , 2007, Neuron.

[53]  Yun Yen,et al.  Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. , 2007, Cancer research.

[54]  Roberto Malinow,et al.  Synaptic Incorporation of AMPA Receptors during LTP Is Controlled by a PKC Phosphorylation Site on GluR1 , 2006, Neuron.

[55]  M. Karin,et al.  Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Daly,et al.  Ca2+/Calmodulin-Dependent Protein Kinase II Is a Modulator of CARMA1-Mediated NF-κB Activation , 2006, Molecular and Cellular Biology.

[57]  Marina Cretich,et al.  Protein and peptide arrays: recent trends and new directions. , 2006, Biomolecular engineering.

[58]  Yosuke Takei,et al.  KIF4 Motor Regulates Activity-Dependent Neuronal Survival by Suppressing PARP-1 Enzymatic Activity , 2006, Cell.

[59]  M. Dietel,et al.  The PI3K inhibitor LY294002 blocks drug export from resistant colon carcinoma cells overexpressing MRP1 , 2006, Oncogene.

[60]  Michael Karin,et al.  IKKβ Couples Hepatocyte Death to Cytokine-Driven Compensatory Proliferation that Promotes Chemical Hepatocarcinogenesis , 2005, Cell.

[61]  D. Moore,et al.  Xenobiotic stress induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane receptor. , 2005, Molecular endocrinology.

[62]  A. Zhu,et al.  Hepatocellular carcinoma: the need for progress. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[63]  Paul Tempst,et al.  Phosphorylation and Functional Inactivation of TSC2 by Erk Implications for Tuberous Sclerosisand Cancer Pathogenesis , 2005, Cell.

[64]  T. Mak,et al.  Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. , 2004, The Journal of clinical investigation.

[65]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[66]  Ulf Reimer,et al.  Peptide arrays: from macro to micro. , 2002, Current Opinion in Biotechnology.

[67]  B. Chait,et al.  Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-γ , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Chen,et al.  Protein Kinase C-ζ Phosphorylates Insulin Receptor Substrate-1 and Impairs Its Ability to Activate Phosphatidylinositol 3-Kinase in Response to Insulin* , 2001, The Journal of Biological Chemistry.

[69]  L. Terracciano,et al.  Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. , 2000, Science.

[70]  R A Roth,et al.  Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. , 1997, Biochemistry.

[71]  E. Van Obberghen,et al.  Phosphorylation of Insulin Receptor Substrate-1 on Multiple Serine Residues, 612, 632, 662, and 731, Modulates Insulin Action (*) , 1996, The Journal of Biological Chemistry.

[72]  P. Sassone-Corsi,et al.  Multiple and cooperative phosphorylation events regulate the CREM activator function. , 1993, The EMBO journal.

[73]  Y. Yen,et al.  Berbamine Inhibits the Growth of Liver Cancer Cells and Cancer-Initiating Cells by Targeting Ca 2þ /Calmodulin- , 2013 .

[74]  Avi Ma'ayan,et al.  Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers , 2012, Bioinform..

[75]  M. Karin,et al.  NF-κB and STAT3 – key players in liver inflammation and cancer , 2011, Cell Research.

[76]  H. El‐Serag,et al.  Hepatocellular carcinoma. , 2011, The New England journal of medicine.

[77]  M. Daly,et al.  Ca2+/calmodulin-dependent protein kinase II is a modulator of CARMA1-mediated NF-kappaB activation. , 2006, Molecular and cellular biology.

[78]  M. Reyland,et al.  Protein kinase Cdelta regulates apoptosis via activation of STAT1. , 2004, The Journal of biological chemistry.