From Quantum Many-Body Systems to Ideal Fluids

Abstract. We give a rigorous, quantitative derivation of the incompressible Euler equation from the many-body problem for N bosons on T with binary Coulomb interactions in the semiclassical regime. The coupling constant of the repulsive interaction potential is 1/(εN), where ε ≪ 1 and N ≫ 1, so that by choosing ε = N, for appropriate λ > 0, the scaling is supercritical with respect to the usual mean-field regime. For approximately monokinetic initial states with nearly uniform density, we show that the density of the first marginal converges to 1 as N → ∞ and ~ → 0, while the current of the first marginal converges to a solution u of the incompressible Euler equation on an interval for which the equation admits a classical solution. In dimension 2, the dependence of ε on N is essentially optimal, while in dimension 3, heuristic considerations suggest our scaling is optimal. To the best of our knowledge, our result is a new connection between quantum many-body systems and ideal hydrodynamics, complementing the previously known connection to compressible fluids. Our proof is based on a Gronwall relation for a quantum modulated energy with an appropriate corrector and is inspired by recent work of Golse and Paul [GP21] on the derivation of the pressureless Euler-Poisson equation in the classical and mean-field limits and of Han-Kwan and Iacobelli [HKI21] and the author [Ros21] on the derivation of the incompressible Euler equation from Newton’s second law in the supercritical mean-field limit. As a byproduct of our analysis, we also derive the incompressible Euler equation from the Schrödinger-Poisson equation in the limit as ~+ ε → 0, corresponding to a combined classical and quasineutral limit.

[1]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[2]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[3]  C. Chou The Vlasov equations , 1965 .

[4]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[5]  Megan Griffin-Pickering,et al.  Recent Developments on Quasineutral Limits for Vlasov-Type Equations , 2021, Recent Advances in Kinetic Equations and Applications.

[6]  T. Paul,et al.  Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit , 2017, Communications in Mathematical Physics.

[7]  Jean,et al.  Henri Poincare,为科学服务的一生 , 2006 .

[8]  M. Hauray Mean field limit for the one dimensional Vlasov-Poisson equation , 2013, 1309.2531.

[9]  Thierry Paul,et al.  On the derivation of the Hartree equation from the N-body Schrödinger equation: Uniformity in the Planck constant , 2016, Journal of Functional Analysis.

[10]  Daniel Han-Kwan,et al.  From Newton’s second law to Euler’s equations of perfect fluids , 2020, 2006.14924.

[11]  崔承吉,et al.  9 , 1967, The Mother Knot.

[12]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[13]  Matthew Rosenzweig,et al.  On the rigorous derivation of the incompressible Euler equation from Newton’s second law , 2021, Letters in Mathematical Physics.

[14]  Kathleen Daly,et al.  Volume 7 , 1998 .

[15]  T. Paul,et al.  Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction , 2019, Communications on Pure and Applied Mathematics.

[16]  B. Khesin The Group and Hamiltonian Descriptions of Hydrodynamical Systems , 2009 .

[17]  Mitia Duerinckx,et al.  On the Size of Chaos via Glauber Calculus in the Classical Mean-Field Dynamics , 2019, Communications in Mathematical Physics.

[18]  Anand U. Oza,et al.  Hydrodynamic quantum analogs , 2014, Reports on progress in physics. Physical Society.

[19]  H. Neunzert,et al.  Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen , 1974 .

[20]  Pierre-Emmanuel Jabin,et al.  Mean Field Limit and Propagation of Chaos for Vlasov Systems with Bounded Forces , 2015, 1511.03769.

[21]  Megan Griffin-Pickering,et al.  A Mean Field Approach to the Quasi-Neutral Limit for the Vlasov-Poisson Equation , 2018, SIAM J. Math. Anal..

[22]  Winfried Sickel,et al.  Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.

[23]  Thierry Paul,et al.  The Schrödinger Equation in the Mean-Field and Semiclassical Regime , 2015, 1510.06681.

[24]  Dustin Lazarovici The Vlasov-Poisson Dynamics as the Mean Field Limit of Extended Charges , 2015, 1502.07047.

[25]  Pierre-Emmanuel Jabin,et al.  Particles approximations of Vlasov equations with singular forces : Propagation of chaos , 2011, 1107.3821.

[26]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[27]  C. Saffirio,et al.  Strong semiclassical limit from Hartree and Hartree-Fock to Vlasov-Poisson equation , 2020, 2003.02926.

[28]  STAT , 2019, Springer Reference Medizin.

[29]  P. Pickl A Simple Derivation of Mean Field Limits for Quantum Systems , 2009, 0907.4464.

[30]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[31]  G. Staffilani,et al.  A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation , 2019, Advances in Mathematics.

[32]  M. Khodja,et al.  The semiclassical limit of the time dependent Hartree–Fock equation: The Weyl symbol of the solution , 2011, 1112.6185.

[33]  Semiclassical, t → ∞ asymptotics and dispersive effects for hartree-fock systems : Dedicated to Helmut Neunzert at the occasion of his 60th birthday , 1998 .

[34]  Bekr Belkaid Tlemcen,et al.  Equations aux Dérivées Partielles et Applications , 2012 .

[35]  Mitia Duerinckx,et al.  Mean-Field Limits for Some Riesz Interaction Gradient Flows , 2015, SIAM J. Math. Anal..

[36]  T. Paul,et al.  Semiclassical limit for mixed states with singular and rough potentials , 2010, 1012.2483.

[37]  B. M. Fulk MATH , 1992 .

[38]  Horng-Tzer Yau,et al.  Derivation of the nonlinear Schr\"odinger equation from a many body Coulomb system , 2001 .

[39]  T. Paul,et al.  Strong semiclassical approximation of Wigner functions for the Hartree dynamics , 2010, 1009.0470.

[40]  Mean field limit for Coulomb-type flows , 2018, 1803.08345.

[41]  Benjamin Schlein,et al.  Quantum Fluctuations and Rate of Convergence Towards Mean Field Dynamics , 2007, 0711.3087.

[42]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[43]  Laurent Lafleche Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation , 2018, Journal of Statistical Physics.

[44]  F. Golse On the Dynamics of Large Particle Systems in the Mean Field Limit , 2013, 1301.5494.

[45]  Derivation of the Euler equations from many-body quantum mechanics , 2002, math-ph/0210036.

[46]  Emmanuel Grenier,et al.  Defect measures of the vlasov-poisson system in the quasineutral regime , 1995 .

[47]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[48]  Laurent Lafleche,et al.  From many-body quantum dynamics to the Hartree--Fock and Vlasov equations with singular potentials , 2021 .

[49]  Laure Saint-Raymond,et al.  Hydrodynamic Limits of the Boltzmann Equation , 2009 .

[50]  M. Puel CONVERGENCE OF THE SCHRÖDINGER–POISSON SYSTEM TO THE INCOMPRESSIBLE EULER EQUATIONS , 2002 .

[51]  E. Grenier Limite quasi-neutre en dimension $1$ , 1999 .

[52]  François Golse,et al.  Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .

[53]  M. Porta,et al.  From the Hartree Dynamics to the Vlasov Equation , 2015, Archive for Rational Mechanics and Analysis.

[55]  Peter Pickl,et al.  On Mean Field Limits for Dynamical Systems , 2013, 1307.2999.

[56]  Chiara Saffirio,et al.  From the Hartree Equation to the Vlasov-Poisson System: Strong Convergence for a Class of Mixed States , 2019, SIAM J. Math. Anal..

[57]  Pierre-Emmanuel Jabin,et al.  N-particles Approximation of the Vlasov Equations with Singular Potential , 2003, math/0310039.

[58]  M. Khodja,et al.  The classical limit of the Heisenberg and time-dependent Hartree–Fock equations: the Wick symbol of the solution , 2013 .

[59]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[60]  G. Manfredi,et al.  How to model quantum plasmas , 2005, quant-ph/0505004.

[61]  N. Masmoudi FROM VLASOV-POISSON SYSTEM TO THE INCOMPRESSIBLE EULER SYSTEM , 2001 .

[62]  G. Fano,et al.  On the Hartree-Fock time-dependent problem , 1976 .

[63]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[64]  Emmanuel Grenier Oscillations in quasineutral plasmas , 1996 .

[65]  M. Rosenzweig The Mean-Field Limit of Stochastic Point Vortex Systems with Multiplicative Noise , 2020, 2011.12180.

[66]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[67]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[68]  Geometry of the Madelung Transform , 2018, Archive for Rational Mechanics and Analysis.

[69]  Marcin Napi'orkowski Dynamics of interacting bosons: a compact review , 2021 .

[70]  K. N. Dollman,et al.  - 1 , 1743 .

[71]  Mikaela Iacobelli,et al.  Singular limits for plasmas with thermalised electrons , 2018, Journal de Mathématiques Pures et Appliquées.

[72]  Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons , 2006, math-ph/0603055.

[73]  Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System , 2008, 0810.1387.

[74]  Louis de Broglie,et al.  La mécanique ondulatoire et la structure atomique de la matière et du rayonnement , 1927 .

[75]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[76]  T. Paul,et al.  On the Mean Field and Classical Limits of Quantum Mechanics , 2015, Communications in Mathematical Physics.

[77]  S. Serfaty,et al.  Higher‐Dimensional Coulomb Gases and Renormalized Energy Functionals , 2013, 1307.2805.

[78]  H. K. Moffatt,et al.  Lectures on Topological Fluid Mechanics , 2009 .

[79]  S. Serfaty Gaussian Fluctuations and Free Energy Expansion for 2D and 3D Coulomb Gases at Any Temperature. , 2020 .

[80]  Stefan Teufel,et al.  Bohmian Mechanics: The Physics and Mathematics of Quantum Theory , 2009 .

[81]  H. Narnhofer,et al.  Vlasov hydrodynamics of a quantum mechanical model , 1981 .

[82]  Peter Pickl,et al.  A Mean Field Limit for the Vlasov–Poisson System , 2015, 1502.04608.

[83]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[84]  H. Neunzert,et al.  On the Vlasov hierarchy , 1981 .

[85]  Mean-Field Approximation of Quantum Systems and Classical Limit , 2002, math-ph/0205033.

[86]  Y. Brenier,et al.  Limite singulière du système de Vlasov-Poisson dans le régime de quasi neutralité : le cas indépendant du temps , 1994 .

[87]  Sylvia Serfaty,et al.  Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise , 2021 .

[88]  Derivation of the Euler Equations from Quantum Dynamics , 2002, math-ph/0209027.

[89]  C. Saffirio Semiclassical Limit to the Vlasov Equation with Inverse Power Law Potentials , 2019, Communications in Mathematical Physics.

[90]  Peter J. Olver,et al.  A nonlinear Hamiltonian structure for the Euler equations , 1982 .