From Quantum Many-Body Systems to Ideal Fluids
暂无分享,去创建一个
[1] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .
[2] 野村栄一,et al. 2 , 1900, The Hatak Witches.
[3] C. Chou. The Vlasov equations , 1965 .
[4] H. Spohn. Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .
[5] Megan Griffin-Pickering,et al. Recent Developments on Quasineutral Limits for Vlasov-Type Equations , 2021, Recent Advances in Kinetic Equations and Applications.
[6] T. Paul,et al. Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit , 2017, Communications in Mathematical Physics.
[7] Jean,et al. Henri Poincare,为科学服务的一生 , 2006 .
[8] M. Hauray. Mean field limit for the one dimensional Vlasov-Poisson equation , 2013, 1309.2531.
[9] Thierry Paul,et al. On the derivation of the Hartree equation from the N-body Schrödinger equation: Uniformity in the Planck constant , 2016, Journal of Functional Analysis.
[10] Daniel Han-Kwan,et al. From Newton’s second law to Euler’s equations of perfect fluids , 2020, 2006.14924.
[11] 崔承吉,et al. 9 , 1967, The Mother Knot.
[12] W. Braun,et al. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .
[13] Matthew Rosenzweig,et al. On the rigorous derivation of the incompressible Euler equation from Newton’s second law , 2021, Letters in Mathematical Physics.
[14] Kathleen Daly,et al. Volume 7 , 1998 .
[15] T. Paul,et al. Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction , 2019, Communications on Pure and Applied Mathematics.
[16] B. Khesin. The Group and Hamiltonian Descriptions of Hydrodynamical Systems , 2009 .
[17] Mitia Duerinckx,et al. On the Size of Chaos via Glauber Calculus in the Classical Mean-Field Dynamics , 2019, Communications in Mathematical Physics.
[18] Anand U. Oza,et al. Hydrodynamic quantum analogs , 2014, Reports on progress in physics. Physical Society.
[19] H. Neunzert,et al. Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen , 1974 .
[20] Pierre-Emmanuel Jabin,et al. Mean Field Limit and Propagation of Chaos for Vlasov Systems with Bounded Forces , 2015, 1511.03769.
[21] Megan Griffin-Pickering,et al. A Mean Field Approach to the Quasi-Neutral Limit for the Vlasov-Poisson Equation , 2018, SIAM J. Math. Anal..
[22] Winfried Sickel,et al. Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.
[23] Thierry Paul,et al. The Schrödinger Equation in the Mean-Field and Semiclassical Regime , 2015, 1510.06681.
[24] Dustin Lazarovici. The Vlasov-Poisson Dynamics as the Mean Field Limit of Extended Charges , 2015, 1502.07047.
[25] Pierre-Emmanuel Jabin,et al. Particles approximations of Vlasov equations with singular forces : Propagation of chaos , 2011, 1107.3821.
[26] Norbert J. Mauser,et al. THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .
[27] C. Saffirio,et al. Strong semiclassical limit from Hartree and Hartree-Fock to Vlasov-Poisson equation , 2020, 2003.02926.
[28] STAT , 2019, Springer Reference Medizin.
[29] P. Pickl. A Simple Derivation of Mean Field Limits for Quantum Systems , 2009, 0907.4464.
[30] E. Madelung,et al. Quantentheorie in hydrodynamischer Form , 1927 .
[31] G. Staffilani,et al. A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation , 2019, Advances in Mathematics.
[32] M. Khodja,et al. The semiclassical limit of the time dependent Hartree–Fock equation: The Weyl symbol of the solution , 2011, 1112.6185.
[34] Bekr Belkaid Tlemcen,et al. Equations aux Dérivées Partielles et Applications , 2012 .
[35] Mitia Duerinckx,et al. Mean-Field Limits for Some Riesz Interaction Gradient Flows , 2015, SIAM J. Math. Anal..
[36] T. Paul,et al. Semiclassical limit for mixed states with singular and rough potentials , 2010, 1012.2483.
[37] B. M. Fulk. MATH , 1992 .
[38] Horng-Tzer Yau,et al. Derivation of the nonlinear Schr\"odinger equation from a many body Coulomb system , 2001 .
[39] T. Paul,et al. Strong semiclassical approximation of Wigner functions for the Hartree dynamics , 2010, 1009.0470.
[40] Mean field limit for Coulomb-type flows , 2018, 1803.08345.
[41] Benjamin Schlein,et al. Quantum Fluctuations and Rate of Convergence Towards Mean Field Dynamics , 2007, 0711.3087.
[42] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .
[43] Laurent Lafleche. Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation , 2018, Journal of Statistical Physics.
[44] F. Golse. On the Dynamics of Large Particle Systems in the Mean Field Limit , 2013, 1301.5494.
[45] Derivation of the Euler equations from many-body quantum mechanics , 2002, math-ph/0210036.
[46] Emmanuel Grenier,et al. Defect measures of the vlasov-poisson system in the quasineutral regime , 1995 .
[47] P. Markowich,et al. Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .
[48] Laurent Lafleche,et al. From many-body quantum dynamics to the Hartree--Fock and Vlasov equations with singular potentials , 2021 .
[49] Laure Saint-Raymond,et al. Hydrodynamic Limits of the Boltzmann Equation , 2009 .
[50] M. Puel. CONVERGENCE OF THE SCHRÖDINGER–POISSON SYSTEM TO THE INCOMPRESSIBLE EULER EQUATIONS , 2002 .
[51] E. Grenier. Limite quasi-neutre en dimension $1$ , 1999 .
[52] François Golse,et al. Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .
[53] M. Porta,et al. From the Hartree Dynamics to the Vlasov Equation , 2015, Archive for Rational Mechanics and Analysis.
[55] Peter Pickl,et al. On Mean Field Limits for Dynamical Systems , 2013, 1307.2999.
[56] Chiara Saffirio,et al. From the Hartree Equation to the Vlasov-Poisson System: Strong Convergence for a Class of Mixed States , 2019, SIAM J. Math. Anal..
[57] Pierre-Emmanuel Jabin,et al. N-particles Approximation of the Vlasov Equations with Singular Potential , 2003, math/0310039.
[58] M. Khodja,et al. The classical limit of the Heisenberg and time-dependent Hartree–Fock equations: the Wick symbol of the solution , 2013 .
[59] M. Reed,et al. Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .
[60] G. Manfredi,et al. How to model quantum plasmas , 2005, quant-ph/0505004.
[61] N. Masmoudi. FROM VLASOV-POISSON SYSTEM TO THE INCOMPRESSIBLE EULER SYSTEM , 2001 .
[62] G. Fano,et al. On the Hartree-Fock time-dependent problem , 1976 .
[63] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[64] Emmanuel Grenier. Oscillations in quasineutral plasmas , 1996 .
[65] M. Rosenzweig. The Mean-Field Limit of Stochastic Point Vortex Systems with Multiplicative Noise , 2020, 2011.12180.
[66] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[67] Y. Brenier,et al. convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .
[68] Geometry of the Madelung Transform , 2018, Archive for Rational Mechanics and Analysis.
[69] Marcin Napi'orkowski. Dynamics of interacting bosons: a compact review , 2021 .
[70] K. N. Dollman,et al. - 1 , 1743 .
[71] Mikaela Iacobelli,et al. Singular limits for plasmas with thermalised electrons , 2018, Journal de Mathématiques Pures et Appliquées.
[72] Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons , 2006, math-ph/0603055.
[73] Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System , 2008, 0810.1387.
[74] Louis de Broglie,et al. La mécanique ondulatoire et la structure atomique de la matière et du rayonnement , 1927 .
[75] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[76] T. Paul,et al. On the Mean Field and Classical Limits of Quantum Mechanics , 2015, Communications in Mathematical Physics.
[77] S. Serfaty,et al. Higher‐Dimensional Coulomb Gases and Renormalized Energy Functionals , 2013, 1307.2805.
[78] H. K. Moffatt,et al. Lectures on Topological Fluid Mechanics , 2009 .
[79] S. Serfaty. Gaussian Fluctuations and Free Energy Expansion for 2D and 3D Coulomb Gases at Any Temperature. , 2020 .
[80] Stefan Teufel,et al. Bohmian Mechanics: The Physics and Mathematics of Quantum Theory , 2009 .
[81] H. Narnhofer,et al. Vlasov hydrodynamics of a quantum mechanical model , 1981 .
[82] Peter Pickl,et al. A Mean Field Limit for the Vlasov–Poisson System , 2015, 1502.04608.
[83] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[84] H. Neunzert,et al. On the Vlasov hierarchy , 1981 .
[85] Mean-Field Approximation of Quantum Systems and Classical Limit , 2002, math-ph/0205033.
[86] Y. Brenier,et al. Limite singulière du système de Vlasov-Poisson dans le régime de quasi neutralité : le cas indépendant du temps , 1994 .
[87] Sylvia Serfaty,et al. Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise , 2021 .
[88] Derivation of the Euler Equations from Quantum Dynamics , 2002, math-ph/0209027.
[89] C. Saffirio. Semiclassical Limit to the Vlasov Equation with Inverse Power Law Potentials , 2019, Communications in Mathematical Physics.
[90] Peter J. Olver,et al. A nonlinear Hamiltonian structure for the Euler equations , 1982 .