A Fast Summation Tree Code for Matérn Kernel

The Matern family of functions is a widely used covariance kernel in spatial statistics for Gaussian process modeling, which in many instances requires calculations with a covariance matrix. In this paper, we design a fast summation algorithm for the Matern kernel in order to efficiently perform matrix-vector multiplications. This algorithm is based on the Barnes-Hut tree code framework and addresses several practical issues: the anisotropy of the kernel, the nonuniform distribution of the point set, and a tight error estimate of the approximation. Even though the algorithmic details differ from the standard tree code in several aspects, empirically the computational cost of our algorithm scales as O(n log n )f orn points. Comprehensive numerical experiments are shown to demonstrate the practicality of the design.

[1]  Per-Gunnar Martinsson,et al.  A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[2]  K. Lindsay,et al.  A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow , 2001 .

[3]  Joshua E. Barnes,et al.  A modified tree code: don't laugh; it runs , 1990 .

[4]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[5]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[6]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[7]  Henry A. Boateng Cartesian Treecode Algorithms for Electrostatic Interactions in Molecular Dynamics Simulations. , 2010 .

[8]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[9]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[10]  MIHAI ANITESCU,et al.  A Matrix-free Approach for Solving the Parametric Gaussian Process Maximum Likelihood Problem , 2012, SIAM J. Sci. Comput..

[11]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[12]  Yousef Saad,et al.  Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection , 2009, J. Mach. Learn. Res..

[13]  M. Urner Scattered Data Approximation , 2016 .

[14]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[15]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[16]  Lei Wang,et al.  Fast Evaluation of Multiquadric RBF Sums by a Cartesian Treecode , 2011, SIAM J. Sci. Comput..

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[19]  Bertram Ross,et al.  Solved Problems: Gamma and Beta Functions, Legendre Polynomials, Bessel Functions , 1963 .

[20]  Mihai Anitescu,et al.  Computing f(A)b via Least Squares Polynomial Approximations , 2011, SIAM J. Sci. Comput..

[21]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[22]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[23]  M. Anitescu,et al.  STOCHASTIC APPROXIMATION OF SCORE FUNCTIONS FOR GAUSSIAN PROCESSES , 2013, 1312.2687.

[24]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[25]  Jie Chen,et al.  A Parallel Tree Code for Computing Matrix-Vector Products with the Matérn Kernel , 2013 .

[26]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[27]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[28]  Lexing Ying,et al.  Fast construction of hierarchical matrix representation from matrix-vector multiplication , 2009, J. Comput. Phys..

[29]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[30]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[31]  Jianlin Xia,et al.  Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..

[32]  D. E. Amos Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.

[33]  Peijun Li,et al.  A Cartesian treecode for screened coulomb interactions , 2009, J. Comput. Phys..

[34]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[35]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[36]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[37]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[38]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .